Genome- and transcriptome-wide off-target analyses of a high-efficiency adenine base editor in tomato

Author:

Sretenovic Simon1ORCID,Green Yumi2,Wu Yuechao34ORCID,Cheng Yanhao1,Zhang Tao34ORCID,Van Eck Joyce25ORCID,Qi Yiping16ORCID

Affiliation:

1. Department of Plant Science and Landscape Architecture, University of Maryland , College Park, MD 20742 , USA

2. The Boyce Thompson Institute , Ithaca, NY 14853 , USA

3. Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University , Yangzhou 225009 , China

4. Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University , Yangzhou 225009 , China

5. Plant Breeding and Genetics Section, Cornell University , Ithaca, NY 14853 , USA

6. Institute for Bioscience and Biotechnology Research, University of Maryland , Rockville, MD 20850 , USA

Abstract

Abstract Adenine base editors (ABEs) are valuable, precise genome editing tools in plants. In recent years, the highly promising ADENINE BASE EDITOR8e (ABE8e) was reported for efficient A-to-G editing. However, compared to monocots, comprehensive off-target analyses for ABE8e are lacking in dicots. To determine the occurrence of off-target effects in tomato (Solanum lycopersicum), we assessed ABE8e and a high-fidelity version, ABE8e-HF, at 2 independent target sites in protoplasts, as well as stable T0 lines. Since ABE8e demonstrated higher on-target efficiency than ABE8e-HF in tomato protoplasts, we focused on ABE8e for off-target analyses in T0 lines. We conducted whole-genome sequencing (WGS) of wild-type (WT) tomato plants, green fluorescent protein (GFP)–expressing T0 lines, ABE8e-no-gRNA control T0 lines, and edited T0 lines. No guide RNA (gRNA)–dependent off-target edits were detected. Our data showed an average of approximately 1,200 to 1,500 single-nucleotide variations (SNVs) in either GFP control plants or base-edited plants. Also, no specific enrichment of A-to-G mutations were found in base-edited plants. We also conducted RNA sequencing (RNA-seq) of the same 6 base-edited and 3 GFP control T0 plants. On average, approximately 150 RNA–level SNVs were discovered per plant for either base-edited or GFP controls. Furthermore, we did not find enrichment of a TA motif on mutated adenine in the genomes and transcriptomes in base-edited tomato plants, as opposed to the recent discovery in rice (Oryza sativa). Hence, we could not find evidence for genome- and transcriptome-wide off-target effects by ABE8e in tomato.

Funder

U.S. Department of Agriculture Biotechnology Risk Assessment Grant Program

National Science Foundation Plant Genome Research Program

Foundation for Food and Agriculture Research Fellow

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3