Low-CO2-inducible bestrophins outside the pyrenoid sustain high photosynthetic efficacy in diatoms

Author:

Nigishi Minori1,Shimakawa Ginga1ORCID,Yamagishi Kansei1,Amano Ryosuke1ORCID,Ito Shun1,Tsuji Yoshinori12ORCID,Nagasato Chikako3ORCID,Matsuda Yusuke1ORCID

Affiliation:

1. Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University , Sanda, Hyogo 669-1330 , Japan

2. Graduate School of Biostudies, Kyoto University , Kyoto 606-8502 , Japan

3. Field Science Center for Northern Biosphere, Muroran Marine Station, Hokkaido University , Muroran 051-0013 , Japan

Abstract

Abstract Anion transporters sustain a variety of physiological states in cells. Bestrophins (BSTs) belong to a Cl− and/or HCO3− transporter family conserved in bacteria, animals, algae, and plants. Recently, putative BSTs were found in the green alga Chlamydomonas reinhardtii, where they are upregulated under low CO2 (LC) conditions and play an essential role in the CO2-concentrating mechanism (CCM). The putative BST orthologs are also conserved in diatoms, secondary endosymbiotic algae harboring red-type plastids, but their physiological functions are unknown. Here, we characterized the subcellular localization and expression profile of BSTs in the marine diatoms Phaeodactylum tricornutum (PtBST1 to 4) and Thalassiosira pseudonana (TpBST1 and 2). PtBST1, PtBST2, and PtBST4 were localized at the stroma thylakoid membrane outside of the pyrenoid, and PtBST3 was localized in the pyrenoid. Contrarily, TpBST1 and TpBST2 were both localized in the pyrenoid. These BST proteins accumulated in cells grown in LC but not in 1% CO2 (high CO2 [HC]). To assess the physiological functions, we generated knockout mutants for the PtBST1 gene by genome editing. The lack of PtBST1 decreased photosynthetic affinity for dissolved inorganic carbon to the level comparable with the HC-grown wild type. Furthermore, non-photochemical quenching in LC-grown cells was 1.5 to 2.0 times higher in the mutants than in the wild type. These data suggest that HCO3− transport at the stroma thylakoid membranes by PtBST1 is a critical part of the CO2-evolving machinery of the pyrenoid in the fully induced CCM and that PtBST1 may modulate photoprotection under CO2-limited environments in P. tricornutum.

Funder

Japan Society for the Promotion of Science

JST CREST

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3