Different functions of Lhcx isoforms in photoprotective mechanism in the marine diatomThalassiosira pseudonana

Author:

Nakayasu Mana,Akimoto SeijiORCID,Yoneda Kohei,Ikuta Soichiro,Shimakawa GingaORCID,Matsuda YusukeORCID

Abstract

AbstractPhotosynthesis needs light energy, but that exceeding the maximal capacity of photosynthesis enhances formation of reactive oxygen species, which potentially causes photodamages. Therefore, light-harvesting complexes (Lhc) in phototrophs harbor various proteins and pigments to function in both light capture and energy dissipation. Diatom Lhcx proteins are reported to be a critical component for thermal dissipation of excess light energy, but the molecular mechanism of photoprotection is still not fully understood and the functions of each Lhcx isoform are not yet differentiated. Here, we focused on two types of Lhcx isoforms inThalassiosira pseudonana: TpLhcx1/2, putative major components for energy-dependent fluorescence quenching (qE); and TpLhcx6_1, functionally unknown isoform uniquely conserved in Thalassiosirales. TpLhcx1/2 proteins accumulated more under high light than under low light, while the TpLhcx6_1 protein level was constitutive irrespective of light intensities and CO2 concentrations. High-light induced photodamage of photosystem II was increased in the genome-editing transformants of these Lhcx isoforms relative to the wild-type. Transformants lacking TpLhcx1/2 showed significantly lowered qE capacities, strongly suggesting that these proteins are important for the fast thermal energy dissipation. While in contrast, genome-editing transformants lacking the TpLhcx6_1 protein rather increased the qE capacity. TpLhcx6_1 transformants were further evaluated by the low-temperature time-resolved chlorophyll fluorescence measurement, showing the longer fluorescence lifetime in transformants than that in the wild type cells even at the dark-acclimated state of these cells. These results suggest that TpLhcx6_1 functions in photoprotection through non-photochemical energy dissipation in the different way from qE.One sentence summaryThe marine diatomThalassiosira pseudonanadissipates excess light energy for photoprotectionviatwo types of mechanisms supported by different Lhc isofoms.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3