A network comprising ELONGATED HYPOCOTYL 5, microRNA397b, and auxin-associated factors regulates root hair growth in Arabidopsis

Author:

Gaddam Subhash Reddy12,Sharma Ashish23ORCID,Bhatia Chitra13ORCID,Trivedi Prabodh Kumar123ORCID

Affiliation:

1. Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI) , Rana Pratap Marg, Lucknow, 226001 , India

2. Plant Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) P.O. CIMAP , Near Kukrail Picnic Spot, Lucknow, 226015 , India

3. Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad, 201002 , India

Abstract

Abstract ELONGATED HYPOCOTYL 5 (HY5) is a major light-associated transcription factor involved in plant growth and development. In Arabidopsis (Arabidopsis thaliana), the role of HY5 is very well defined in regulating primary root growth and lateral root formation; however, information regarding its role in root hair development is still lacking, and little is known about the genetic pathways regulating this process. In this study, we investigated the role of HY5 and its associated components in root hair development. Detailed analysis of root hair phenotype in wild-type and light signaling mutants under light and dark conditions revealed the importance of light-dependent HY5-mediated root hair initiation. Altered auxin levels in the root apex of the hy5 mutant and interaction of HY5 with promoters of root hair developmental genes were responsible for differential expression of root hair developmental genes and phenotype in the hy5 mutant. The partial complementation of root hair in the hy5 mutant after external supplementation of auxin and regaining of root hair in PIN-FORMED 2 and PIN-FORMED 2 mutants after grafting suggested that the auxin-mediated root hair development pathway requires HY5. Furthermore, miR397b overexpression (miR397bOX) and CRISPR/Cas9-based mutants (miR397bCR) indicated miR397b targets genes encoding reduced residual arabinose (RRA1/RRA2), which in turn regulate root hair growth. The regulation of the miR397b-(RRA1/RRA2) module by HY5 demonstrated its indirect role by targeting root hair cell wall genes. Together, this study demonstrated that HY5 controls root hair development by integrating auxin signaling and other miRNA-mediated pathways.

Funder

CSIR

Science and Engineering Research Board

Publisher

Oxford University Press (OUP)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3