ELONGATED HYPOCOTYL 5 regulates steroidal glycoalkaloid biosynthesis and fungal tolerance in tomato

Author:

Sinha Hiteshwari123ORCID,Kumar Ravi Shankar3ORCID,Datta Tapasya3,Singh Deeksha3ORCID,Srivastava Suchi12,Trivedi Prabodh Kumar123ORCID

Affiliation:

1. Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute (CSIR-NBRI), Council of Scientific and Industrial Research (CSIR-NBRI) , Rana Pratap Marg, Lucknow 226001 , India

2. Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad 201002 , India

3. Plant Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) , Lucknow 226015 , India

Abstract

Abstract Tomato (Solanum lycopersicum L.) is rich in nutrients and has been an important target for enhancing the accumulation of various metabolites. Tomato also contains cholesterol-derived molecules, steroidal glycoalkaloids (SGAs), which contribute to pathogen defense but are toxic to humans and considered antinutritional compounds. Previous studies suggest the role of various transcription factors in SGA biosynthesis; however, the role of light and associated regulatory factors has not been studied in tomatoes. Here, we demonstrated that SGA biosynthesis is regulated by light through the ELONGATED HYPOCOTYL 5 homolog, SlHY5, by binding to light-responsive G-boxes present in the promoters of structural and regulatory genes. SlHY5 complemented Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum) hy5 mutants at molecular, morphological, and biochemical levels. CRISPR/Cas9-based knockout tomato plants, SlHY5CR, showed downregulation of SGA and phenylpropanoid pathway genes, leading to a significant reduction in SGA (α-tomatine and dehydrotomatine) and flavonol contents, whereas plants overexpressing SlHY5 (SlHY5OX) showed the opposite effect. Enhanced SGA and flavonol levels in SlHY5OX lines provided tolerance against Alternaria solani fungus, while SlHY5CR lines were susceptible to the pathogen. This study advances our understanding of the HY5-dependent light-regulated biosynthesis of SGAs and flavonoids and their role in biotic stress in tomatoes.

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3