N6-methyladenosine RNA modification regulates photoperiod sensitivity in cotton

Author:

He Ying1ORCID,Si Zhanfeng1ORCID,Mei Gaofu2ORCID,Cheng Yu1ORCID,Zhang Jun1ORCID,Jiang Tao1,Chen Jiani1ORCID,Xiong Huifang1ORCID,Zhang Tianzhen13ORCID,Hu Yan13ORCID

Affiliation:

1. Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University , Hangzhou 310029 , China

2. Key Laboratory of Digital Upland Crops of Zhejiang Province, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences , Hangzhou 310014 , China

3. Precision Breeding and Germplasm Innovation Team for Cotton and Economic Crops, Hainan Institute of Zhejiang University , Sanya 572025 , China

Abstract

Abstract The methylation of N6-methyladenosine (m6A) involves writers, erasers, and readers, acting synergistically in posttranscriptional regulation. These processes influence various biological processes, including plant floral transition. However, the specific role of m6A modifications in photoperiod sensitivity in cotton (Gossypium hirsutum) remains obscure. To elucidate this, in this study, we conducted transcriptome-wide m6A sequencing during critical flowering transition stages in the photoperiod-sensitive wild G. hirsutum var. yucatanense (yucatanense) and the photoperiod-insensitive cultivated cotton G. hirsutum acc. TM-1 (TM-1). Our results revealed significant variations in m6A methylation of 2 cotton varieties, with yucatanense exhibiting elevated m6A modification levels compared with TM-1 under long-day conditions. Notably, distinct m6A peaks between TM-1 and yucatanense correlated significantly with photoperiod sensitivity. Moreover, our study highlighted the role of the demethylase G. hirsutum ALKB homolog 5 (GhALKBH5) in modulating m6A modification levels. Silencing GhALKBH5 led to a decreased mRNA level of key photoperiodic flowering genes (GhADO3, GhAGL24, and GhFT1), resulting in delayed bud emergence and flowering. Reverse transcription quantitative PCR analyses confirmed that silencing GhADO3 and GhAGL24 significantly downregulated the expression of the floral integrator GhFT1. Collectively, our findings unveiled a transcriptional regulatory mechanism in which GhALKBH5-mediated m6A demethylation of crucial photoperiodic flowering transcripts modulated photoperiod sensitivity in cotton.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3