Knockdown of the plastid-encoded acetyl-CoA carboxylase gene uncovers functions in metabolism and development

Author:

Caroca Rodrigo1ORCID,Howell Katharine A1ORCID,Malinova Irina1ORCID,Burgos Asdrúbal1,Tiller Nadine1,Pellizzer Tommaso1ORCID,Annunziata Maria Grazia1ORCID,Hasse Claudia1,Ruf Stephanie1ORCID,Karcher Daniel1,Bock Ralph1ORCID

Affiliation:

1. Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany

Abstract

Abstract De novo fatty acid biosynthesis in plants relies on a prokaryotic-type acetyl-CoA carboxylase (ACCase) that resides in the plastid compartment. The enzyme is composed of four subunits, one of which is encoded in the plastid genome, whereas the other three subunits are encoded by nuclear genes. The plastid gene (accD) encodes the β-carboxyltransferase subunit of ACCase and is essential for cell viability. To facilitate the functional analysis of accD, we pursued a transplastomic knockdown strategy in tobacco (Nicotiana tabacum). By introducing point mutations into the translational start codon of accD, we obtained stable transplastomic lines with altered ACCase activity. Replacement of the standard initiator codon AUG with UUG strongly reduced AccD expression, whereas replacement with GUG had no detectable effects. AccD knockdown mutants displayed reduced ACCase activity, which resulted in changes in the levels of many but not all species of cellular lipids. Limiting fatty acid availability caused a wide range of macroscopic, microscopic, and biochemical phenotypes, including impaired chloroplast division, reduced seed set, and altered storage metabolism. Finally, while the mutants displayed reduced growth under photoautotrophic conditions, they showed exaggerated growth under heterotrophic conditions, thus uncovering an unexpected antagonistic role of AccD activity in autotrophic and heterotrophic growth.

Funder

Max Planck Society

Deutsche Forschungsgemeinschaft

Alexander von Humboldt Foundation

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3