The herbaceous peony transcription factor WRKY41a promotes secondary cell wall thickening to enhance stem strength

Author:

Tang Yuhan1ORCID,Lu Lili1ORCID,Huang Xingqi2ORCID,Zhao Daqiu1ORCID,Tao Jun13ORCID

Affiliation:

1. College of Horticulture and Landscape Architecture, Yangzhou University , Yangzhou, 225009, China

2. Department of Biochemistry, Purdue University , West Lafayette, Indiana, 47907, USA

3. Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University , Yangzhou, 225009, China

Abstract

Abstract Stem bending or lodging caused by insufficient stem strength is an important limiting factor for plant production. Secondary cell walls play a crucial role in plant stem strength, but whether WRKY transcription factors can positively modulate secondary cell wall thickness are remain unknown. Here, we characterized a WRKY transcription factor PlWRKY41a from herbaceous peony (Paeonia lactiflora), which was highly expressed in stems. PlWRKY41a functioned as a nucleus-localized transcriptional activator and enhanced stem strength by positively modulating secondary cell wall thickness. Moreover, PlWRKY41a bound to the promoter of the XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE4 (PlXTH4) and activated the expression of PlXTH4. PlXTH4-overexpressing tobacco (Nicotiana tabacum) had thicker secondary cell walls, resulting in enhanced stem strength, while PlXTH4-silenced P. lactiflora had thinner secondary cell walls, showing decreased stem strength. Additionally, PlWRKY41a directly interacted with PlMYB43 to form a protein complex, and their interaction induced the expression of PlXTH4. These data support that the PlMYB43-PlWRKY41a protein complex can directly activate the expression of PlXTH4 to enhance stem strength by modulating secondary cell wall thickness in P. lactiflora. The results will enhance our understanding of the formation mechanism of stem strength and provide a candidate gene to improve stem straightness in plants.

Funder

National Natural Science Foundation of China

Forestry Science and Technology Prossmotion Project of Jiangsu Province

Modern Agriculture

Industrial Technology System of Jiangsu Province

Qing Lan Project of Jiangsu Province and High-Level Talent Support Program of Yangzhou University

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3