Hypothesis tests in ordinal predictive models with optimal accuracy

Author:

Liu Yuyang1,Luo Shan2ORCID,Li Jialiang34

Affiliation:

1. Shanghai Zhangjiang Institute of Mathematics , Shanghai, 201203 , China

2. Department of Statistics, School of Mathematical Sciences, Shanghai Jiao Tong University , Shanghai, 200240 , China

3. Department of Statistics and Data Science, National University of Singapore , Singapore, 117546 , Singapore

4. Duke University-NUS Graduate Medical School, National University of Singapore , Singapore, 169857 , Singapore

Abstract

ABSTRACT In real-world applications involving multi-class ordinal discrimination, a common approach is to aggregate multiple predictive variables into a linear combination, aiming to develop a classifier with high prediction accuracy. Assessment of such multi-class classifiers often utilizes the hypervolume under ROC manifolds (HUM). When dealing with a substantial pool of potential predictors and achieving optimal HUM, it becomes imperative to conduct appropriate statistical inference. However, prevalent methodologies in existing literature are computationally expensive. We propose to use the jackknife empirical likelihood method to address this issue. The Wilks’ theorem under moderate conditions is established and the power analysis under the Pitman alternative is provided. We also introduce a novel network-based rapid computation algorithm specifically designed for computing a general multi-sample $U$-statistic in our test procedure. To compare our approach against existing approaches, we conduct extensive simulations. Results demonstrate the superior performance of our method in terms of test size, power, and implementation time. Furthermore, we apply our method to analyze a real medical dataset and obtain some new findings.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3