Topical hidden genome: discovering latent cancer mutational topics using a Bayesian multilevel context-learning approach

Author:

Chakraborty Saptarshi1ORCID,Guan Zoe2ORCID,Begg Colin B3ORCID,Shen Ronglai3ORCID

Affiliation:

1. Department of Biostatistics, State University of New York at Buffalo, Buffalo, NY 14214, USA

2. Biostatistics Center, Mass General Research Institute , Boston, MA 02114, USA

3. Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center , New York, NY 10065 , USA

Abstract

ABSTRACT Inferring the cancer-type specificities of ultra-rare, genome-wide somatic mutations is an open problem. Traditional statistical methods cannot handle such data due to their ultra-high dimensionality and extreme data sparsity. To harness information in rare mutations, we have recently proposed a formal multilevel multilogistic “hidden genome” model. Through its hierarchical layers, the model condenses information in ultra-rare mutations through meta-features embodying mutation contexts to characterize cancer types. Consistent, scalable point estimation of the model can incorporate 10s of millions of variants across thousands of tumors and permit impressive prediction and attribution. However, principled statistical inference is infeasible due to the volume, correlation, and noninterpretability of mutation contexts. In this paper, we propose a novel framework that leverages topic models from computational linguistics to effectuate dimension reduction of mutation contexts producing interpretable, decorrelated meta-feature topics. We propose an efficient MCMC algorithm for implementation that permits rigorous full Bayesian inference at a scale that is orders of magnitude beyond the capability of existing out-of-the-box inferential high-dimensional multi-class regression methods and software. Applying our model to the Pan Cancer Analysis of Whole Genomes dataset reveals interesting biological insights including somatic mutational topics associated with UV exposure in skin cancer, aging in colorectal cancer, and strong influence of epigenome organization in liver cancer. Under cross-validation, our model demonstrates highly competitive predictive performance against blackbox methods of random forest and deep learning.

Funder

National Cancer Institute

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing Cancer Patient Classification Forecasting With Bayesian Pattern Recognition;International Journal of Healthcare Information Systems and Informatics;2024-08-14

2. Identifying somatic fingerprints of cancers defined by germline and environmental risk factors;Genetic Epidemiology;2024-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3