Optimizing Cancer Patient Classification Forecasting With Bayesian Pattern Recognition

Author:

Tansitpong Praowpan1ORCID

Affiliation:

1. NIDA Business School, National Institute of Development Administration, Thailand

Abstract

This research examines patterns in cancer treatment by analyzing electronic medical record (EMR) data, with the goal of optimizing healthcare provision and improving patient outcomes. The study aims to apply Bayesian prediction models and regression analysis to determine the posterior probability of comorbidities and forecast patient arrivals. The implemented algorithms allow for the customization of treatment techniques, resulting in enhanced effectiveness of therapy and improved decision-making in healthcare delivery. Utilizing Bayesian approaches to analyze EMR data provides insights into the intricacies of cancer treatment and related expenses. The application of this study could be useful to enhance healthcare information systems and informatics by using data-driven insights to improve cancer care practices and operational efficiency in hospital settings.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3