Affiliation:
1. Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia 5000, Australia
2. Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
Abstract
ABSTRACT
Background
In preclinical studies, bitter compounds, including quinine, stimulate secretion of glucoregulatory hormones [e.g., glucagon-like peptide-1 (GLP-1)] and slow gastric emptying, both key determinants of postprandial glycemia. A greater density of bitter-taste receptors has been reported in the duodenum than the stomach. Thus, intraduodenal (ID) delivery may be more effective in stimulating GI functions to lower postprandial glucose.
Objective
We compared effects of intragastric (IG) and ID quinine [as quinine hydrochloride (QHCl)] administration on the plasma glucose response to a mixed-nutrient drink and relations with gastric emptying, plasma C-peptide (reflecting insulin secretion), and GLP-1.
Methods
Fourteen healthy men [mean ± SD age: 25 ± 3 y; BMI (in kg/m2): 22.5 ± 0.5] received, on 4 separate occasions, in double-blind, randomly assigned order, 600 mg QHCl or control, IG or ID, 60 min (IG conditions) or 30 min (IG conditions) before a mixed-nutrient drink. Plasma glucose (primary outcome) and hormones were measured before, and for 2 h following, the drink. Gastric emptying of the drink was measured using a 13C-acetate breath test. Data were analyzed using repeated-measures 2-way ANOVAs (factors: treatment and route of administration) to evaluate effects of QHCl alone and 3-way ANOVAs (factors: treatment, route-of-administration, and time) for responses to the drink.
Results
After QHCl alone, there were effects of treatment, but not route of administration, on C-peptide, GLP-1, and glucose (P < 0.05); QHCl stimulated C-peptide and GLP-1 and lowered glucose concentrations (IG control: 4.5 ± 0.1; IG-QHCl: 3.9 ± 0.1; ID-control: 4.6 ± 0.1; ID-QHCl: 4.2 ± 0.1 mmol/L) compared with control. Postdrink, there were treatment × time interactions for glucose, C-peptide, and gastric emptying, and a treatment effect for GLP-1 (all P < 0.05), but no route-of-administration effects. QHCl stimulated C-peptide and GLP-1, slowed gastric emptying, and reduced glucose (IG control: 7.2 ± 0.3; IG-QHCl: 6.2 ± 0.3; ID-control: 7.2 ± 0.3; ID-QHCl: 6.4 ± 0.4 mmol/L) compared with control.
Conclusions
In healthy men, IG and ID quinine administration similarly lowered plasma glucose, increased plasma insulin and GLP-1, and slowed gastric emptying. These findings have potential implications for lowering blood glucose in type 2 diabetes. This study was registered as a clinical trial with the Australian New Zealand Clinical Trials at www.anzctr.org.au as ACTRN12619001269123.
Funder
University of Adelaide
CFB
NHMRC Senior Research Fellowship
NHMRC
Publisher
Oxford University Press (OUP)
Subject
Nutrition and Dietetics,Medicine (miscellaneous)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献