Fungal-derived selenium nanoparticles and their potential applications in electroless silver coatings for preventing pin-tract infections

Author:

Liang Xinjin12,Zhang Shuai3ORCID,Gadd Geoffrey Michael24,McGrath John5,Rooney David W6,Zhao Qi7

Affiliation:

1. The Bryden Centre, School of Chemical and Chemistry Engineering, Queen’s University Belfast, Univeristy Road, Belfast BT7 1NN, UK

2. Geomicrobiology Group, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK

3. School of Pharmacy, Queen’s University Belfast, Lisburn Road, Belfast BT9 7BL, UK

4. State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, 18 Fuxue Road, Changping District, Beijing 102249, China

5. School of Biological Sciences, Queen's University Belfast, Chlorine Gardens, Belfast BT9 5DL, UK

6. School of Chemistry and Chemical Engineering, Queen’s University Belfast, Stranmillis Road, Belfast BT9 5AG, UK

7. School of Science and Engineering, University of Dundee, Nethergate, Dundee DD1 4HN, UK

Abstract

Abstract Pin-tract infections (PTIs) are a common complication of external fixation of fractures and current strategies for preventing PTIs have proven to be ineffective. Recent advances show that the use of anti-infection coatings with local antibacterial activity may solve this problem. Selenium has been considered as a promising anti-infection agent owing to its antibacterial and antibiofilm activities. In this study, selenium nanoparticles (SeNPs) were synthesized via a cost-effective fungi-mediated biorecovery approach and demonstrated excellent stability and homogeneity. To investigate their anti-infection potential, the SeNPs were doped in silver coatings through an electroless plating process and the silver–selenium (Ag–Se) coatings were tested for antibacterial and antibiofilm properties against Staphylococcus aureus F1557 and Escherichia coli WT F1693 as well as corrosion resistance in simulated body fluid. It was found that the Ag–Se coating significantly inhibited S.aureus growth and biofilm formation on the surface, reducing 81.2% and 59.7% of viable bacterial adhesion when compared with Ag and Ag–PTFE-coated surfaces after 3 days. The Ag–Se coating also exhibited improved corrosion resistance compared with the Ag coating, leading to a controlled release of Ag+, which in turn reduced the risk of cytotoxicity against hFOBs. These results suggest that the fungal-derived SeNPs may have potential in use as implant coatings to prevent PTIs.

Funder

UK Engineering and Physical Sciences Research Council

European Union’s INTERREG VA Programme

Publisher

Oxford University Press (OUP)

Subject

Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3