Biphasic mineralized collagen-based composite scaffold for cranial bone regeneration in developing sheep

Author:

Zheng Jingchuan1,Zhao Zhijun2,Yang Yongdong3,Wang Shuo1,Zhao Yonggang1,Xiong Yang1,Yang Shuhui1,Qiu Zhiye4ORCID,Song Tianxi4,Zhang Chunyang2,Wang Xiumei1ORCID

Affiliation:

1. State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

2. Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical School, Baotou 014010, China

3. Dongzhimen Hospital Affiliated Beijing University of Chinese Medicine, Beijing 100700, China

4. Beijing Allgens Medical Science and Technology Co., Ltd., Beijing 100176, China

Abstract

Abstract Appropriate mechanical support and excellent osteogenic capability are two essential prerequisites of customized implants for regenerating large-sized cranial bone defect. Although porous bone scaffolds have been widely proven to promote bone regeneration, their weak mechanical properties limit the clinical applications in cranioplasty. Herein, we applied two previously developed mineralized collagen-based bone scaffolds (MC), porous MC (pMC) and compact MC (cMC) to construct a biphasic MC composite bone scaffold (bMC) to repair the large-sized cranial bone defect in developing sheep. A supporting frame composed of cMC phase in the shape of tic–tac–toe structure was fabricated first and then embedded in pMC phase. The two phases had good interfacial bond, attributing to the formation of an interfacial zone. The in vivo performance of the bMC scaffold was evaluated by using a cranial bone defect model in 1-month-old sheep. The computed tomography imaging, X-ray scanning and histological evaluation showed that the pMC phase in the bMC scaffold, similar to the pMC scaffold, was gradually replaced by the regenerative bone tissues with comprehensively increased bone mineral density and complete connection of bone bridge in the whole region. The cMC frame promoted new bone formation beneath the frame without obvious degradation, thus providing appropriate mechanical protection and ensuring the structural integrity of the implant. In general, the sheep with bMC implantation exhibited the best status of survival, growth and the repair effect. The biphasic structural design may be a prospective strategy for developing new generation of cranioplasty materials to regenerate cranial bone defect in clinic.

Funder

National Key R&D Program of China

Shandong Province Key R&D Program of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3