PSA controls hepatic lipid metabolism by regulating the NRF2 signaling pathway

Author:

Huang Bangliang1,Xiong Xin1,Zhang Linlin1,Liu Xiufei1,Wang Yuren1,Gong Xiaoli1,Sang Qian1,Lu Yongling2,Qu Hua1,Zheng Hongting1,Zheng Yi1ORCID

Affiliation:

1. Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, The Second Affiliated Hospital of Army Medical University, Chongqing, China

2. Medical Research Center, Southwest Hospital of Army Medical University, Chongqing, China

Abstract

Abstract The activity of proteinase is reported to correlate with the development and progression of nonalcoholic fatty liver disease (NAFLD). Puromycin-sensitive aminopeptidase (PSA/NPEPPS) is an integral nontransmembrane enzyme that functions to catalyze the cleavage of amino acids near the N-terminus of polypeptides. A previous study suggested that this enzyme acts as a regulator of neuropeptide activity; however, the metabolic function of this enzyme in the liver has not been explored. Here, we identified the novel role of PSA in hepatic lipid metabolism. Specifically, PSA expression was lower in fatty livers from NAFLD patients and mice (HFD, ob/ob, and db/db). PSA knockdown in cultured hepatocytes exacerbated diet-induced triglyceride accumulation through enhanced lipogenesis and attenuated fatty acid β-oxidation. Moreover, PSA mediated activation of the master regulator of antioxidant response, nuclear factor erythroid 2-related factor 2 (NRF2), by stabilizing NRF2 protein expression, which further induced downstream antioxidant enzymes to protect the liver from oxidative stress and lipid overload. Accordingly, liver-specific PSA overexpression attenuated hepatic lipid accumulation and steatosis in ob/ob mice. Furthermore, in human liver tissue samples, decreased PSA expression correlated with the progression of NAFLD. Overall, our findings suggest that PSA is a pivotal regulator of hepatic lipid metabolism and its antioxidant function occurs by suppressing NRF2 ubiquitination. Moreover, PSA may be a potential biomarker and therapeutic target for treating NAFLD.

Funder

National Natural Science Foundation of China

National Science Fund for Distinguished Young Scholars

Talent Project’ of Army Medical University

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Genetics,Molecular Biology,General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3