Is the Affine Space Determined by Its Automorphism Group?

Author:

Kraft Hanspeter1,Regeta Andriy2,van Santen (born Stampfli) Immanuel1

Affiliation:

1. Departement Mathematik und Informatik, Universität Basel, Spiegelgasse 1, Basel, Switzerland

2. Mathematisches Institut, Universität Köln, Weyertal 86-90, Köln, Germany

Abstract

Abstract In this note we study the problem of characterizing the complex affine space ${\mathbb{A}}^n$ via its automorphism group. We prove the following. Let $X$ be an irreducible quasi-projective $n$-dimensional variety such that $\operatorname{Aut}(X)$ and $\operatorname{Aut}({\mathbb{A}}^n)$ are isomorphic as abstract groups. If $X$ is either quasi-affine and toric or $X$ is smooth with Euler characteristic $\chi (X) \neq 0$ and finite Picard group $\operatorname{Pic}(X)$, then $X$ is isomorphic to ${\mathbb{A}}^n$. The main ingredient is the following result. Let $X$ be a smooth irreducible quasi-projective variety of dimension $n$ with finite $\operatorname{Pic}(X)$. If $X$ admits a faithful $({\mathbb{Z}} / p {\mathbb{Z}})^n$-action for a prime $p$ and $\chi (X)$ is not divisible by $p$, then the identity component of the centralizer $\operatorname{Cent}_{\operatorname{Aut}(X)}( ({\mathbb{Z}} / p {\mathbb{Z}})^n)$ is a torus.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference30 articles.

1. “Remarks on the action of an algebraic torus on ${k}^{n}$.”;Białynicki-Birula;Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys,1966

2. “Algebraic structures of groups of birational transformations.”;Blanc,2017

3. Annals of Mathematics Studies;Borel,1960

4. Pure and Applied Mathematics;Bredon,1972

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Families of commuting automorphisms, and a characterization of the affine space;American Journal of Mathematics;2023-04

2. On the Automorphism Group of Non-Necessarily Normal Affine Toric Varieties;International Mathematics Research Notices;2023-03-22

3. Existence of embeddings of smooth varieties into linear algebraic groups;Journal of Algebraic Geometry;2022-10-03

4. CHARACTERIZATION OF n-DIMENSIONAL NORMAL AFFINE SLn-VARIETIES;Transformation Groups;2022-03

5. Characterizing smooth affine spherical varieties via the automorphism group;Journal de l’École polytechnique — Mathématiques;2021-02-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3