Abstract
AbstractWe show that any normal irreducible affine n-dimensional SLn-variety X is determined by its automorphism group seen as an ind-group in the category of normal irreducible affine varieties. In other words, if Y is an irreducible affine normal algebraic variety such that Aut(Y) ≃ Aut(X) as an ind-group, then Y ≃ X as a variety. If we drop the condition of normality on Y , then this statement fails. In case n ≥ 3, the result above holds true if we replace Aut(X) by 𝒰(X), where 𝒰(X) is the subgroup of Aut(X) generated by all one-dimensional unipotent subgroups. In dimension 2 we have some interesting exceptions.
Publisher
Springer Science and Business Media LLC
Subject
Geometry and Topology,Algebra and Number Theory
Reference30 articles.
1. Arzhantsev, I., Flenner, H., Kaliman, S., Kutzschebauch, F., Zaidenberg, M.: Flexible varieties and automorphism groups. Duke Math. J. 162(4), 767–823 (2013)
2. I. Arzhantsev, M. Zaidenberg, Acyclic curves and group actions on affine toric surfaces, in: Affine Algebraic Geometry, Osaka, March 3–6, 2011, World Scientific, Singapore, 2013, pp. 1–41.
3. Berchtold, F., Hausen, J.: Demushkin’s theorem in codimension one. Math. Z. 244(4), 697–703 (2003)
4. S. Cantat, A. Regeta, J. Xie, Families of commuting automorphisms, and a characterization of the affine space, arXiv:1912.01567 (2019).
5. В. И. Данилов, М. Х. Гизатуллин, Автоморфизмы аффинной поверхности II, Изв. АН СССР. Cер. матем. 41 (1977), вып. 1, 54–103. Engl. transl.: V. I. Danilov, M. H. Gizatullin, Automorphisms of affine surfaces II, Math. USSR Izv. 11 (1977), no. 1, 51–98.