Branched Holomorphic Cartan Geometries and Calabi–Yau Manifolds

Author:

Biswas Indranil1,Dumitrescu Sorin2

Affiliation:

1. School of Mathematics, Tata Institute of Fundamental Research, Mumbai, India

2. Université Côte d’Azur, CNRS, LJAD, France

Abstract

Abstract We introduce the concept of a branched holomorphic Cartan geometry. It generalizes to higher dimension the definition of branched (flat) complex projective structure on a Riemann surface introduced by Mandelbaum [25]. This new framework is much more flexible than that of the usual holomorphic Cartan geometries. We show that all compact complex projective manifolds admit a branched flat holomorphic projective structure. We also give an example of a non-flat branched holomorphic normal projective structure on a compact complex surface. It is known that no compact complex surface admits such a structure with empty branching locus. We prove that non-projective compact simply connected Kähler Calabi–Yau manifolds do not admit any branched holomorphic projective structure. The key ingredient of its proof is the following result of independent interest: if E is a holomorphic vector bundle over a compact simply connected Kähler Calabi–Yau manifold and E admits a holomorphic connection, then E is a trivial holomorphic vector bundle and any holomorphic connection on E is trivial.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3