Author:
Deroin Bertrand,Guillot Adolfo
Abstract
We formalize the concepts of holomorphic affine and projective structures along the leaves of holomorphic foliations by curves on complex manifolds. We show that many foliations admit such structures, we provide local normal forms for them at singular points of the foliation, and we prove some index formulae in the case where the ambient manifold is compact. As a consequence of these, we establish that a regular foliation of general type on a compact algebraic manifold of even dimension does not admit a foliated projective structure. Finally, we classify foliated affine and projective structures along regular foliations on compact complex surfaces.
Subject
Algebra and Number Theory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献