Using advanced technologies to quantify beef cattle behavior1

Author:

Richeson John T1,Lawrence Ty E1,White Brad J2

Affiliation:

1. Department of Agricultural Sciences, West Texas A&M University, Canyon, TX

2. Department of Clinical Sciences, Kansas State University, Manhattan, KS

Abstract

Abstract For decades, we have relied upon visual observation of animal behavior to define clinical disease, assist in breeding selection, and predict growth performance. Limitations of visual monitoring of cattle behavior include training of personnel, subjectivity, and brevity. In addition, extensive time and labor is required to visually monitor behavior in large numbers of animals, and the prey instinct of cattle to disguise abnormal behaviors in the presence of a human evaluator is problematic. More recently, cattle behavior has been quantified objectively and continuously using advanced technologies to assess animal welfare, indicate lameness or disease, and detect estrus in both production and research settings. The current review will summarize three methodologies for quantification of cattle behavior with focus on U.S. beef production systems; 1) three-axis accelerometers that quantify physical behavior, 2) systems that document feeding and watering behavior via radio frequency, and 3) triangulation or global positioning systems to determine location and movement of cattle within a pen or pasture. Furthermore, advances in Wi-Fi and radio frequency technology have allowed many of these systems to operate remotely and in real-time and efforts are underway to develop commercial applications that may allow early detection of respiratory or other cattle diseases in the production environment. Current challenges with commercial application of technology for early disease detection include establishment of an appropriate algorithm to ensure maximum sensitivity and specificity, reliable and repeatable data collection in harsh environments, cost:benefit, and integration with traditional methodology for clinical diagnosis. Advanced technologies have also allowed cattle researchers to determine temporal variance in behavior or variability between experimental treatments. However, these data sets are typically very large and challenges exist regarding statistical analysis and reporting.

Publisher

Oxford University Press (OUP)

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3