Evolutionary Diversification in Insect Vector–Phytoplasma–Plant Associations

Author:

Trivellone V1ORCID,Dietrich C H1ORCID

Affiliation:

1. Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL

Abstract

Abstract The association between insect herbivores and vascular plants represents one of the greatest success stories in terrestrial evolution. Specific mechanisms generating diversity in the association remain poorly understood, but it has become increasingly clear that microbes play important roles in mediating plant–insect interactions. Previous research on phytoplasmas (Acholeplasmatales: Acholeplasmataceae), a diverse group of plant-pathogenic bacteria, and their hemipteran insect vectors suggests that this system provides a new model for understanding how interactions among distantly related but ecologically associated groups of organisms can drive evolutionary diversification. Phytoplasma infections affect the phenotypes of both plants and vectors, altering functional traits (e.g., diet breadth) and mediating host shifts which may, in turn, alter genetic and phylogenetic patterns. This review highlights previous research on the functional ecology and phylogenetic components of phytoplasma-plant-vector (PPV) associations relevant to the evolutionary diversification of this system. Although phytoplasmas and their hosts occur in most terrestrial biomes and have evolved together over the past 300+ million years, major gaps in knowledge of PPV associations remain because most prior research on the system focused on strategies for mitigating effects of phytoplasma diseases in agroecosystems. Study of this system within a broader evolutionary context could help elucidate mechanisms by which interactions between insect herbivores, microbes, and plants drive biological diversification and also help predict the emergence of diseases affecting agriculture. Future research should more thoroughly document PPV associations in natural habitats, examine the relative prevalence of cospeciation versus host shifts in this system, and test possible macroevolutionary consequences of host manipulation by phytoplasmas.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Insect Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3