Cucumber malate decarboxylase, CsNADP-ME2, functions in the balance of carbon and amino acid metabolism in fruit

Author:

Shan Nan12,Zhang Youjun3,Guo Yicong1,Zhang Wenna1,Nie Jing1,Fernie Alisdair R3,Sui Xiaolei1

Affiliation:

1. China Agricultural University Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, , Beijing 100193, China

2. Jiangxi Agricultural University Jiangxi Province Key Laboratory of Root and Tuber Crops Biology ( ), Nanchang 330045, China

3. Max Planck Institute of Molecular Plant Physiology , Potsdam-Golm 14476 Germany

Abstract

Abstract Central metabolism produces carbohydrates and amino acids that are tightly correlated to plant growth and thereby crop productivity. Malate is reported to link mitochondrial respiratory metabolism with cytosolic biosynthetic pathways. Although the function of malate metabolism-related enzymes in providing carbon has been characterized in some plants, evidence for this role in the fleshy fruit of cucumber is lacking. Here, radiolabeled bicarbonate fed into the xylem stream from the cucumber roots was incorporated into amino acids, soluble sugars, and organic acids in the exocarp and vasculature of fruits. The activities of decarboxylases, especially decarboxylation from NADP-dependent malic enzyme (NADP-ME), were higher in cucumber fruit than in the leaf lamina. Histochemical localization revealed that CsNADP-ME2 was mainly located in the exocarp and vascular bundle system of fruit. Radiotracer and gas-exchange analysis indicated that overexpression of CsNADP-ME2 could promote carbon flux into soluble sugars and starch in fruits. Further studies combined with metabolic profiling revealed that the downregulation of CsNADP-ME2 in RNA interference (RNAi) lines caused the accumulation of its substrate, malate, in the exocarp. In addition to inhibition of glycolysis-related gene expression and reduction of the activities of the corresponding enzymes, increased amino acid synthesis and decreased sugar abundance were also observed in these lines. The opposite effect was found in CsNADP-ME2-overexpressing lines, suggesting that there may be a continuous bottom-up feedback regulation of glycolysis in cucumber fruits. Overall, our studies indicate that CsNADP-ME2 may play potential roles in both central carbon reactions and amino acid metabolism in cucumber fruits.

Funder

Ministry of Education of P.R.C

China Agriculture Research System of MOF and MARA

Max-Planck Society and European Union’s Horizon 2020 research and innovation programme, project PlantaSYST

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3