Expression of malic enzyme reveals subcellular carbon partitioning for storage reserve production in soybeans

Author:

Morley Stewart A.12ORCID,Ma Fangfang2ORCID,Alazem Mazen2ORCID,Frankfater Cheryl12,Yi Hochul2,Burch‐Smith Tessa2ORCID,Clemente Tom Elmo3,Veena Veena2,Nguyen Hanh4,Allen Doug K.12ORCID

Affiliation:

1. United States Department of Agriculture, Agricultural Research Service 975 N Warson Rd St Louis MO 63132 USA

2. Donald Danforth Plant Science Center 975 N Warson Rd St Louis MO 63132 USA

3. Department of Agronomy & Horticulture University of Nebraska‐Lincoln 202 Keim Hall Lincoln NE 68583 USA

4. Center for Plant Science Innovation University of Nebraska N300 Beadle Center, 1901 Vine St. Lincoln NE 68588 USA

Abstract

Summary Central metabolism produces amino and fatty acids for protein and lipids that establish seed value. Biosynthesis of storage reserves occurs in multiple organelles that exchange central intermediates including two essential metabolites, malate, and pyruvate that are linked by malic enzyme. Malic enzyme can be active in multiple subcellular compartments, partitioning carbon and reducing equivalents for anabolic and catabolic requirements. Prior studies based on isotopic labeling and steady‐state metabolic flux analyses indicated malic enzyme provides carbon for fatty acid biosynthesis in plants, though genetic evidence confirming this role is lacking. We hypothesized that increasing malic enzyme flux would alter carbon partitioning and result in increased lipid levels in soybeans. Homozygous transgenic soybean plants expressing Arabidopsis malic enzyme alleles, targeting the translational products to plastid or outside the plastid during seed development, were verified by transcript and enzyme activity analyses, organelle proteomics, and transient expression assays. Protein, oil, central metabolites, cofactors, and acyl‐acyl carrier protein (ACPs) levels were quantified overdevelopment. Amino and fatty acid levels were altered resulting in an increase in lipids by 0.5–2% of seed biomass (i.e. 2–9% change in oil). Subcellular targeting of a single gene product in central metabolism impacts carbon and reducing equivalent partitioning for seed storage reserves in soybeans.

Funder

Division of Biological Infrastructure

Publisher

Wiley

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3