Highly multiplexed, fast and accurate nanopore sequencing for verification of synthetic DNA constructs and sequence libraries

Author:

Currin Andrew12ORCID,Swainston Neil123ORCID,Dunstan Mark S12,Jervis Adrian J12ORCID,Mulherin Paul12ORCID,Robinson Christopher J12ORCID,Taylor Sandra12,Carbonell Pablo12ORCID,Hollywood Katherine A12ORCID,Yan Cunyu12,Takano Eriko12ORCID,Scrutton Nigel S12ORCID,Breitling Rainer12ORCID

Affiliation:

1. Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK

2. School of Natural Sciences, Department of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK

3. Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK

Abstract

Abstract Synthetic biology utilizes the Design–Build–Test–Learn pipeline for the engineering of biological systems. Typically, this requires the construction of specifically designed, large and complex DNA assemblies. The availability of cheap DNA synthesis and automation enables high-throughput assembly approaches, which generates a heavy demand for DNA sequencing to verify correctly assembled constructs. Next-generation sequencing is ideally positioned to perform this task, however with expensive hardware costs and bespoke data analysis requirements few laboratories utilize this technology in-house. Here a workflow for highly multiplexed sequencing is presented, capable of fast and accurate sequence verification of DNA assemblies using nanopore technology. A novel sample barcoding system using polymerase chain reaction is introduced, and sequencing data are analyzed through a bespoke analysis algorithm. Crucially, this algorithm overcomes the problem of high-error rate nanopore data (which typically prevents identification of single nucleotide variants) through statistical analysis of strand bias, permitting accurate sequence analysis with single-base resolution. As an example, 576 constructs (6 × 96 well plates) were processed in a single workflow in 72 h (from Escherichia coli colonies to analyzed data). Given our procedure’s low hardware costs and highly multiplexed capability, this provides cost-effective access to powerful DNA sequencing for any laboratory, with applications beyond synthetic biology including directed evolution, single nucleotide polymorphism analysis and gene synthesis.

Funder

Biotechnology and Biological Sciences Research Council

Centre for Synthetic Biology of Fine and Speciality Chemicals

European Union Horizon 2020

Research and Innovation Programme

Publisher

Oxford University Press (OUP)

Subject

Agricultural and Biological Sciences (miscellaneous),Biomedical Engineering,Biomaterials,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3