Computational Modeling of Primary Blast Lung Injury: Implications for Ventilator Management

Author:

Herrmann Jacob12,Tawhai Merryn H3,Kaczka David W124

Affiliation:

1. Department of Anesthesia, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA

2. Department of Biomedical Engineering, University of Iowa, 5601 Seamans Center for the Engineering Arts and Sciences, Iowa City, IA

3. Auckland Bioengineering Institute, University of Auckland, 6/70 Symonds St, Grafton, Auckland 1010, New Zealand

4. Department of Radiology, University of Iowa Hospitals and Clinics, 3970 John Pappajohn Pavilion, 200 Hawkins Dr, Iowa City, IA

Abstract

Abstract Primary blast lung injury (PBLI) caused by exposure to high-intensity pressure waves is associated with parenchymal tissue injury and severe ventilation-perfusion mismatch. Although supportive ventilation is often required in patients with PBLI, maldistribution of gas flow in mechanically heterogeneous lungs may lead to further injury due to increased parenchymal strain and strain rate, which are difficult to predict in vivo. In this study, we developed a computational lung model with mechanical properties consistent with healthy and PBLI conditions. PBLI conditions were simulated with bilateral derecruitment and increased perihilar tissue stiffness. As a result of these tissue abnormalities, airway flow was heterogeneously distributed in the model under PBLI conditions, during both conventional mechanical ventilation (CMV) and high-frequency oscillatory ventilation. PBLI conditions resulted in over three-fold higher parenchymal strains compared to the healthy condition during CMV, with flow distributed according to regional tissue stiffness. During high-frequency oscillatory ventilation, flow distribution became increasingly heterogeneous and frequency-dependent. We conclude that the distribution and rate of parenchymal distension during mechanical ventilation depend on PBLI severity as well as ventilatory modality. These simulations may allow realistic assessment of the risks associated with ventilator-induced lung injury following PBLI, and facilitate the development of alternative lung-protective ventilation modalities.

Funder

Office of the Assistant Secretary of Defense for Health Affairs

Medical Technologies Centre of Research Excellence

University of Auckland

National Institutes of Health

University of Iowa

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health,General Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3