The Dynamic Response of Human Lungs Due to Underwater Shock Wave Exposure

Author:

Bar-Kochba EyalORCID,Iwaskiw Alexander S.,Dunn Jenna M.,Ott Kyle A.ORCID,Harrigan Timothy P.,Demetropoulos Constantine K.ORCID

Abstract

Since the 19th century, underwater explosions have posed a significant threat to service members. While there have been attempts to establish injury criteria for the most vulnerable organs, namely the lungs, existing criteria are highly variable due to insufficient human data and the corresponding inability to understand the underlying injury mechanisms. This study presents an experimental characterization of isolated human lung dynamics during simulated exposure to underwater shock waves. We found that the large acoustic impedance at the surface of the lung severely attenuated transmission of the shock wave into the lungs. However, the shock wave initiated large bulk pressure-volume cycles that are distinct from the response of the solid organs under similar loading. These pressure-volume cycles are due to compression of the contained gas, which we modeled with the Rayleigh-Plesset equation. The extent of these lung dynamics was dependent on physical confinement, which in real underwater blast conditions is influenced by factors such as rib cage properties and donned equipment. Findings demonstrate a potential causal mechanism for implosion injuries, which has significant implications for the understanding of primary blast lung injury due to underwater blast exposures.

Publisher

Cold Spring Harbor Laboratory

Reference59 articles.

1. John B Green . Diving with & Without Armor: Containing the Submarine Exploits of JB Green. Faxon’s Steam Power Press, Buffalo, NY, Buffalo, NY, 1859.

2. On the Improvements in Diving Dresses and Other Apparatus for Working Under Water

3. Andrew Gordon . The rules of the game: Jutland and British naval command. Naval Institute Press, 2013.

4. Blast effects in warfare;Journal of British Surgery,1942

5. Diving-related fatalities caused by underwater explosions: a report of two cases;The American journal of forensic medicine and pathology,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3