Mass Properties Comparison of Dismounted and Ground-Mounted Head-Supported Mass Configurations to Existing Performance and Acute Injury Risk Guidelines

Author:

Estep Patrick N12,Bonts Emily G13,Shivers Bethany L1,Wurzbach John M12,Novotny Brian L12,Rybarczyk Kyle1,Chancey Valeta Carol1

Affiliation:

1. Injury Biomechanics Division, U.S. Army Aeromedical Research Laboratory, 6901 Farrel Road, Ft. Rucker, AL

2. Laulima Government Solutions, LLC, 12565 Research Pkwy, Suite 300, Orlando, FL

3. OakRidge Institute for Science and Education, 100 ORAU Way, Oak Ridge, TN

Abstract

Abstract In order to limit the aviator’s exposure to potentially unsafe helmet configurations, the U.S. Army Aeromedical Research Laboratory (USAARL) developed the USAARL Head-supported mass (HSM) Performance Curve and Acute Injury Risk Curve as guidelines for Army aviation HSM. These Curves remain the only established guidelines for Army HSM, but have limited applicability outside of the aviation environment. Helmet developers and program managers have requested guidelines be developed for the dismounted, ground-mounted, and airborne operating environments that consider currently fielded and proposed HSM configurations. The aim of this project was to measure mass properties (mass and center of mass offset) of currently fielded and proposed HSM configurations and compare them against the existing USAARL HSM Curve guidelines. Mass properties were collected for 71 unique dismounted and ground-mounted HSM configurations. None of the 71 HSM configurations met the Acute Injury Risk Curve recommendations, and only 11 of the 71 configurations met Performance Curve recommendations. While some helmets fell within acceptable limits, the addition of night vision goggles and protective masks pushed all configurations outside of the recommended guidelines. Future guidelines will need to be expanded to consider the operating environment, movement techniques, and primary mechanism of injury.

Funder

U.S. Army Medical Research and Materiel Command Military Operational Medicine Research Program

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3