Clinical Readiness: Can Providers Learn to Perform Lower Leg Fasciotomy Through a Tablet-based Augmented Reality Surgical Training Environment?

Author:

Wolf Kieran1,Bowyer Mark1,Bradley Matthew1,Franklin Brenton1,Weissbrod Elizabeth12,Dinnen Ryan1,Andreatta Pamela1ORCID

Affiliation:

1. Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center , Bethesda, MD 20814, USA

2. The Henry M. Jackson Foundation for the Advancement of Military Medicine , Bethesda, MD 20817, USA

Abstract

ABSTRACT Introduction The uses of on-demand, interactive tablet-based surgical training environments are of interest as potential resources for both the acquisition and maintenance of rarely performed, critical procedures for expeditionary surgical care. This study examined the effectiveness of a tablet-based augmented reality (AR) procedural training environment for lower leg fasciotomy with a cohort of novice surgical trainees in (1) procedural knowledge, (2) tablet-based procedural skills, (3) tablet-based procedural time, and (4) procedural performance on a cadaver. We hypothesized that engaging with the AR procedural training would increase procedural knowledge and tablet-based skills and procedural time. We hypothesized that the tablet-based AR training environment would be insufficient to acquire the ability to perform lower leg fasciotomy on a cadaver. Materials and Methods This study was approved as exempt by the Institutional Review Board at USU. Surgical interns, sub-interns, and independent duty corpsman (n = 30) with no prior lower leg fasciotomy experience voluntarily participated. Tablet-based training activities included pre-training assessment, engagement with instruction, interactive procedural practice, and post-training assessment. Tablet-based knowledge assessment included 17 multiple choice questions covering concepts, reasoning, and judgment associated with the procedure. Tablet-based procedural completion and time were assessed within the training environment. Within 1 week of completing the tablet activities, participants were assessed by fellowship-trained trauma surgeons while performing cadaver-based lower leg fasciotomy. Statistical analysis included paired t-tests and effect size (Cohen’s d). Statistical significance was set at P < .05. Results Tablet-based AR procedural training significantly improved procedural knowledge (P < .001), tablet-based procedural skills (P < .001), and reduced tablet-based procedural time (P < .002). Effect sizes were very large for tablet-based procedural knowledge (d = 1.75) and skills (d = 3.2) and small (d = 0.42) for procedural time. There were no significant effects of procedural knowledge, tablet-based procedural skills, or time on cadaver-based performance. No participant was able to accurately and independently complete lower leg fasciotomy procedure on a cadaver. Conclusions Tablet-based AR procedural training improved procedural knowledge and tablet-based skills; however, those gains did not transfer to the ability to perform the procedure on a cadaver. The tablet’s limited AR interface did not support the acquisition of requisite surgical technique, tissue handling, and decision-making in novice surgical trainees. Experienced surgeons may have different outcomes because their mature understanding of surgical constructs would allow extrapolation of abilities to other procedural contexts. Further investigation of the tablet-based training environments for surgical care is necessary before distributing such resources to support clinical readiness.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3