Maximizing Oxygen Delivery in Portable Ventilators

Author:

Blakeman Thomas1ORCID,Fowler John-Michael2,Salvator Ann2,Rodriquez Dario2

Affiliation:

1. University of Cincinnati School of Medicine , Cincinnati, OH 45267, USA

2. Airman Biosciences Division , U.S. Air Force, Wright Patterson AFB, OH 45433, USA

Abstract

ABSTRACT Background Military transport of critically ill/injured patients requires judicious use of resources. Maintaining oxygen (O2) supplies for mechanically ventilated is crucial. O2 cylinders are difficult to transport due to the size and weight and add the risk of fire in an aircraft. The proposed solution is the use of a portable oxygen concentrator (POC) to supply O2 for mechanical ventilation. As long as power is available, a POC can provide an endless supply of O2. Anecdotal evidence suggests that as little as 3 L/min of O2 could manage as many as 2/3 of the mechanically ventilated military aeromedical transport patients. Materials and Methods We evaluated two each of the AutoMedx SAVe II, Hamilton T1, Zoll 731, and Ventec VOCSN portable ventilators over a range of settings paired with 1 and 2 Caire SAROS POCs at ground level and simulated altitudes of 8,000 feet, 16,000 feet, and 22,000 feet. The Ventec VOCSN has the capability of utilizing an internal O2 concentrator that uses pulsed dose technology, which was also evaluated. Each ventilator was attached to a Michigan Instruments Training Test Lung. Output from the POC was bled into each ventilator via the mechanism provided with each device. A Fleisch pneumotach was used to measure delivered tidal volume (VT), and a fast-response O2 analyzer was used to measure FiO2 within the simulated lung. Ventilator parameters and FiO2 were continuously measured and recorded at each altitude. One-way analysis of variance was used to determine statistically significant differences (P < .05) in FiO2 between ventilators and among the same ventilator model at each testing condition. Results Delivered FiO2 varied widely between ventilator models and between devices of the same model with some testing conditions. Differences in FiO2 between ventilators at a majority (98.5%) of testing conditions were statistically significant (P < .05) but not all were clinically important. The Zoll 731 delivered the highest and most consistent FiO2 over all ventilator/POC settings at all altitudes. Differences in FiO2 at a given ventilator/POC setting from ground level to 22,000 feet were not clinically important (<5%) with this device. The VOCSN utilizing the integrated internal O2 concentrator delivered the lowest FiO2 across all ventilator/POC settings and altitudes. Due to the inability of the SAVe II to operate at the minute ventilation and positive end expiratory pressure (PEEP) settings required by the testing protocol, the device was only tested at one ventilator setting. The Hamilton T1 failed to operate appropriately at the highest VT/PEEP setting at 16,000 feet and all but one ventilator setting at 22,000 feet. The delivered FiO2 was not included in the analysis for those ventilator settings. The highest delivered FiO2 was 0.85 ± 0.05 at the 250 mL VT setting using 2 POCs (P < .0001) at ground level with the Zoll 731. Conclusions Oxygen delivery utilizing POCs is dependent upon multiple factors including ventilator operating characteristics, ventilator settings, altitude, and the use of pulsed dose or continuous flow O2. Careful patient selection would be paramount to provide safe mechanical ventilation using this method of O2 delivery.

Funder

Air Force Research Laboratory

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health,General Medicine

Reference24 articles.

1. En-route care in the air: snapshot of mechanical ventilation at 37,000 feet;Barnes;J Trauma,2008

2. In vitro-in silico comparison of pulsed oxygen delivery from portable oxygen concentrators versus continuous flow oxygen delivery;Chen;Respir Care,2019

3. Performance comparison of 4 portable oxygen concentrators;Chatburn;Respir Care,2010

4. Bench evaluation of four portable oxygen concentrators under different conditions representing altitudes of 2438, 4200, and 8000 m;Bunel;High Alt Med Biol,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3