A Rodent Model of Sulfur Mustard Hematologic Toxicity for the Efficacy Evaluation of Candidate Medical Countermeasures

Author:

Beske Phillip H1,Wilhelm Christina M1,Harvilchuck Jill A1,Platoff Jr. Gennady E2,Yeung David T2

Affiliation:

1. Battelle Biomedical Research Center, West Jefferson, OH 43162, USA

2. National Institutes of Health/National Institute of Allergy and Infectious Diseases – Chemical Countermeasures Research Program, Bethesda, MD 20892, USA

Abstract

ABSTRACT Introduction While exposure to sulfur mustard (SM) is commonly associated with the production of vesicating dermal, ocular, and respiratory injuries, systemic damage to bone marrow and lymphatic tissue can decrease critical immune cell populations leading to higher susceptibility to life-threatening infection and septicemia. There are currently no approved medical countermeasures for SM-induced myelosuppression. An intravenous SM challenge model was developed in adult rats as a preliminary proof-of-principle platform to evaluate the efficacy of candidate immunostimulants. Materials and Methods Adult male and female Sprague Dawley rats were exposed to SM through tail vein injection. Toxicity progression was monitored through clinical observations, body weights, body temperatures, hematology, serum clinical chemistry, and flow cytometry of blood and bone marrow samples. Results Following SM exposure, overt toxicity progression was characterized by weight loss, changes in body temperature, and manifestation of toxic clinical signs (diarrhea, lethargy, hunched posture, rough hair coat, respiratory distress, and death). Drastic alterations in complete blood cell profiles included an early-onset lymphopenia followed by a delayed-onset neutropenia and thrombocytopenia. Only transient changes in serum clinical chemistry parameters were observed. Flow cytometry analysis of circulating blood revealed that B-cells were more predominantly affected by SM exposure than T-cells. Challenge with SM resulted in loss of hematopoietic and mesenchymal stem cell populations in the bone marrow. Conclusions The small animal model developed in this study replicates many key aspects of human SM exposures and should serve as a relevant, rapid, and cost-effective platform to screen candidate medical countermeasures for SM-induced hematologic toxicity.

Funder

National Institute of Allergy and Infectious Disease

Chemical Countermeasures Research Program

National Institutes of Health

Office of the Director

US Department of Health and Human Services (HHS)/NIH

HHS/Program Support Center

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3