Granulocyte Colony-Stimulating Factor (Neupogen®; Filgrastim) Accelerates Neutrophil Recovery in a Rodent Model of Sulfur Mustard-Induced Hematologic Toxicity

Author:

Beske Phillip H,Harvilchuck Jill A,Gibbs Seth T,Green Carol E,Iyer Lalitha,O’Loughlin Kathleen,Hu Tom C-C,Nealy Michael S,Platoff Gennady E,Yeung David TORCID

Abstract

Abstract Objective: Evidence of myelosuppression has been negatively correlated with patient outcomes following cases of high dose sulfur mustard (SM) exposure. These hematologic complications can negatively impact overall immune function and increase the risk of infection and life-threatening septicemia. Currently, there are no approved medical treatments for the myelosuppressive effects of SM exposure. Methods: Leveraging a recently developed rodent model of SM-induced hematologic toxicity, post-exposure efficacy testing of the granulocyte colony-stimulating factor drug Neupogen® was performed in rats intravenously challenged with SM. Before efficacy testing, pharmacokinetic/pharmacodynamic analyses were performed in naïve rats to identify the apparent human equivalent dose of Neupogen® for efficacy evaluation. Results: When administered 1 d after SM-exposure, daily subcutaneous Neupogen® treatment did not prevent the delayed onset of hematologic toxicity but significantly accelerated recovery from neutropenia. Compared with SM controls, Neupogen®-treated animals recovered body weight faster, resolved toxic clinical signs more rapidly, and did not display transient febrility at time points generally concurrent with marked pancytopenia. Conclusions: Collectively, this work corroborates the results of a previous pilot large animal study, validates the utility of a rodent screening model, and provides further evidence for the potential clinical utility of Neupogen® as an adjunct treatment following SM exposure.

Publisher

Cambridge University Press (CUP)

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3