Genetic architecture and genomic predictive ability of apple quantitative traits across environments

Author:

Jung Michaela12,Keller Beat12,Roth Morgane13,Aranzana Maria José45,Auwerkerken Annemarie6,Guerra Walter7,Al-Rifaï Mehdi8,Lewandowski Mariusz9,Sanin Nadia7,Rymenants Marijn610,Didelot Frédérique11,Dujak Christian5,Font i Forcada Carolina4,Knauf Andrea12,Laurens François8,Studer Bruno2,Muranty Hélène8,Patocchi Andrea1

Affiliation:

1. Agroscope , Breeding Research Group, 8820 Wädenswil, Switzerland

2. Institute of Agricultural Sciences Molecular Plant Breeding, , ETH Zurich, 8092 Zurich, Switzerland

3. GAFL, INRAE , 84140 Montfavet, France

4. IRTA (Institut de Recerca i Tecnologia Agroalimentàries) , 08140 Caldes de Montbui, Barcelona, Spain

5. Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB- UB, Campus UAB, 08193 Bellaterra, Barcelona, Spain

6. Better3fruit N.V. , 3202 Rillaar, Belgium

7. Research Centre Laimburg , 39040 Auer, Italy

8. Univ Angers , Institut Agro, INRAE, IRHS, SFR QuaSaV, F-49000 Angers, France

9. The National Institute of Horticultural Research , Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland

10. Laboratory for Plant Genetics and Crop Improvement , KU Leuven, B-3001 Leuven, Belgium

11. Unité expérimentale Horticole , INRAE, F-49000 Angers, France

Abstract

Abstract Implementation of genomic tools is desirable to increase the efficiency of apple breeding. Recently, the multi-environment apple reference population (apple REFPOP) proved useful for rediscovering loci, estimating genomic predictive ability, and studying genotype by environment interactions (G × E). So far, only two phenological traits were investigated using the apple REFPOP, although the population may be valuable when dissecting genetic architecture and reporting predictive abilities for additional key traits in apple breeding. Here we show contrasting genetic architecture and genomic predictive abilities for 30 quantitative traits across up to six European locations using the apple REFPOP. A total of 59 stable and 277 location-specific associations were found using GWAS, 69.2% of which are novel when compared with 41 reviewed publications. Average genomic predictive abilities of 0.18–0.88 were estimated using main-effect univariate, main-effect multivariate, multi-environment univariate, and multi-environment multivariate models. The G × E accounted for up to 24% of the phenotypic variability. This most comprehensive genomic study in apple in terms of trait-environment combinations provided knowledge of trait biology and prediction models that can be readily applied for marker-assisted or genomic selection, thus facilitating increased breeding efficiency.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

Reference82 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3