Autophagic pathway contributes to low-nitrogen tolerance by optimizing nitrogen uptake and utilization in tomato

Author:

Cao Jiajian12,Zheng Xuelian2,Xie Dongling2,Zhou Hui2,Shao Shujun23,Zhou Jie23

Affiliation:

1. College of Horticulture , Hunan Agricultural University, Nonda Road 1, Changsha, 410128, China

2. Zhejiang University Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, , Yuhangtang Road 866, Hangzhou, 310058, China

3. Key Laboratory of Horticultural Plants Growth , Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, China

Abstract

Abstract Autophagy is a primary process involved in the degradation and reuse of redundant or damaged cytoplasmic components in eukaryotes. Autophagy has been demonstrated to facilitate nutrient recycling and remobilization by delivering intracellular materials to the vacuole for degradation in plants under nutrient starvation. However, the role of autophagy in nitrogen (N) uptake and utilization remains unknown. Here, we report that the ATG6-dependent autophagic pathway regulates N utilization in tomato (Solanum lycopersicum) under low-nitrogen (LN) conditions. Autophagy-disrupted mutants exhibited weakened biomass production and N accumulation compared with wild-type (WT), while ATG6 overexpression promoted autophagy and biomass production under LN stress. The N content in atg6 mutants decreased while that in ATG6-overexpressing lines increased due to the control of N transporter gene expression in roots under LN conditions. Furthermore, ATG6-dependent autophagy enhanced N assimilation efficiency and protein production in leaves. Nitrate reductase and nitrite reductase activities and expression were compromised in atg6 mutants but were enhanced in ATG6-overexpressing plants under LN stress. Moreover, ATG6-dependent autophagy increased plant carbon fixation and photosynthetic capacity. The quantum yield of photosystem II, photosynthetic N use efficiency and photosynthetic protein accumulation were compromised in atg6 mutants but were restored in ATG6-overexpressing plants. A WT scion grafted onto atg6 mutant rootstock and an atg6 scion grafted onto WT rootstock both exhibited inhibited LN-induced autophagy and N uptake and utilization. Thus, ATG6-dependent autophagy regulates not only N uptake and utilization as well as carbon assimilation but also nutrient recycling and remobilization in tomato plants experiencing LN stress.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3