Roles of abscisic acid in regulating ripening and quality of strawberry, a model non-climacteric fruit

Author:

Li Bai-Jun123,Grierson Donald34,Shi Yanna123,Chen Kun-Song123

Affiliation:

1. College of Agriculture and Biotechnology , Zhejiang University, Zijingang Campus, Hangzhou 310058, China

2. Zhejiang University Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, , Zijingang Campus, Hangzhou 310058, China

3. Zhejiang University State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, , Zijingang Campus, Hangzhou 310058, China

4. School of Biosciences Division of Plant and Crop Sciences, , University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK

Abstract

Abstract Abscisic acid (ABA) is a dominant regulator of ripening and quality in non-climacteric fruits. Strawberry is regarded as a model non-climacteric fruit due to its extensive genetic studies and proven suitability for transgenic approaches to understanding gene function. Strawberry research has contributed to studies on color, flavor development, and fruit softening, and in recent years ABA has been established as a core regulator of strawberry fruit ripening, whereas ethylene plays this role in climacteric fruits. Despite this major difference, several components of the interacting genetic regulatory network in strawberry, such as MADS-box and NAC transcription factors, are similar to those that operate in climacteric fruit. In this review, we summarize recent advances in understanding the role of ABA biosynthesis and signaling and the regulatory network of transcription factors and other phytohormones in strawberry fruit ripening. In addition to providing an update on its ripening, we discuss how strawberry research has helped generate a broader and more comprehensive understanding of the mechanism of non-climacteric fruit ripening and focus attention on the use of strawberry as a model platform for ripening studies.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3