Multi-modal optimization to identify personalized biomarkers for disease prediction of individual patients with cancer

Author:

Liang Jing1,Li Zong-Wei1,Yue Cai-Tong1,Hu Zhuo1,Cheng Han2ORCID,Liu Ze-Xian3ORCID,Guo Wei-Feng13ORCID

Affiliation:

1. School of Electrical Engineering, Zhengzhou University , Zhengzhou 450001, China

2. School of Life Sciences, Zhengzhou University , Zhengzhou 450001, China

3. State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center , Guangzhou 510060, China

Abstract

Abstract Finding personalized biomarkers for disease prediction of patients with cancer remains a massive challenge in precision medicine. Most methods focus on one subnetwork or module as a network biomarker; however, this ignores the early warning capabilities of other modules with different configurations of biomarkers (i.e. multi-modal personalized biomarkers). Identifying such modules would not only predict disease but also provide effective therapeutic drug target information for individual patients. To solve this problem, we developed a novel model (denoted multi-modal personalized dynamic network biomarkers (MMPDNB)) based on a multi-modal optimization mechanism and personalized dynamic network biomarker (PDNB) theory, which can provide multiple modules of personalized biomarkers and unveil their multi-modal properties. Using the genomics data of patients with breast or lung cancer from The Cancer Genome Atlas database, we validated the effectiveness of the MMPDNB model. The experimental results showed that compared with other advanced methods, MMPDNB can more effectively predict the critical state with the highest early warning signal score during cancer development. Furthermore, MMPDNB more significantly identified PDNBs containing driver and biomarker genes specific to cancer tissues. More importantly, we validated the biological significance of multi-modal PDNBs, which could provide effective drug targets of individual patients as well as markers for predicting early warning signals of the critical disease state. In conclusion, multi-modal optimization is an effective method to identify PDNBs and offers a new perspective for understanding tumor heterogeneity in cancer precision medicine.

Funder

National Natural Science Foundation of China

Key Scientific and Technological Projects of Henan Province

China Postdoctoral Science Foundation

Henan Postdoctoral Foundation

Research start-up funds for top doctors in Zhengzhou University

State Key Laboratory of Oncology in South China

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3