Uncovering the Pre-Deterioration State during Disease Progression Based on Sample-Specific Causality Network Entropy (SCNE)

Author:

Zhong Jiayuan1ORCID,Tang Hui1,Huang Ziyi2,Chai Hua1,Ling Fei2,Chen Pei3,Liu Rui3

Affiliation:

1. School of Mathematics and Big Data, Foshan University, Foshan 528000, China.

2. School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510640, China.

3. School of Mathematics, South China University of Technology, Guangzhou 510640, China.

Abstract

Complex diseases do not always follow gradual progressions. Instead, they may experience sudden shifts known as critical states or tipping points, where a marked qualitative change occurs. Detecting such a pivotal transition or pre-deterioration state holds paramount importance due to its association with severe disease deterioration. Nevertheless, the task of pinpointing the pre-deterioration state for complex diseases remains an obstacle, especially in scenarios involving high-dimensional data with limited samples, where conventional statistical methods frequently prove inadequate. In this study, we introduce an innovative quantitative approach termed sample-specific causality network entropy (SCNE), which infers a sample-specific causality network for each individual and effectively quantifies the dynamic alterations in causal relations among molecules, thereby capturing critical points or pre-deterioration states of complex diseases. We substantiated the accuracy and efficacy of our approach via numerical simulations and by examining various real-world datasets, including single-cell data of epithelial cell deterioration (EPCD) in colorectal cancer, influenza infection data, and three different tumor cases from The Cancer Genome Atlas (TCGA) repositories. Compared to other existing six single-sample methods, our proposed approach exhibits superior performance in identifying critical signals or pre-deterioration states. Additionally, the efficacy of computational findings is underscored by analyzing the functionality of signaling biomarkers.

Funder

National Natural Science Foundation of China

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3