scESI: evolutionary sparse imputation for single-cell transcriptomes from nearest neighbor cells

Author:

Liu Qiaoming1ORCID,Luo Ximei23,Li Jie1ORCID,Wang Guohua1

Affiliation:

1. School of Computer Science and Technology, Harbin Institute of Technology , Harbin, China

2. School of Electronic and Communication Engineering, Shenzhen Polytechnic , Shenzhen, China

3. Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China , Chengdu, China

Abstract

Abstract The ubiquitous dropout problem in single-cell RNA sequencing technology causes a large amount of data noise in the gene expression profile. For this reason, we propose an evolutionary sparse imputation (ESI) algorithm for single-cell transcriptomes, which constructs a sparse representation model based on gene regulation relationships between cells. To solve this model, we design an optimization framework based on nondominated sorting genetics. This framework takes into account the topological relationship between cells and the variety of gene expression to iteratively search the global optimal solution, thereby learning the Pareto optimal cell–cell affinity matrix. Finally, we use the learned sparse relationship model between cells to improve data quality and reduce data noise. In simulated datasets, scESI performed significantly better than benchmark methods with various metrics. By applying scESI to real scRNA-seq datasets, we discovered scESI can not only further classify the cell types and separate cells in visualization successfully but also improve the performance in reconstructing trajectories differentiation and identifying differentially expressed genes. In addition, scESI successfully recovered the expression trends of marker genes in stem cell differentiation and can discover new cell types and putative pathways regulating biological processes.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Innovation Project of State Key Laboratory of Tree Genetics and Breeding

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3