Multi-omics to characterize the functional relationships of R-loops with epigenetic modifications, RNAPII transcription and gene expression

Author:

Pan Xingxin1,Huang L Frank12ORCID

Affiliation:

1. Division of Experimental Hematology and Cancer Biology , Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229 , USA

2. Department of Pediatrics, University of Cincinnati College of Medicine , Cincinnati, OH 45229 , USA

Abstract

Abstract Abnormal accumulation of R-loops results in replication stress, genome instability, chromatin alterations and gene silencing. Little research has been done to characterize functional relationships among R-loops, histone marks, RNA polymerase II (RNAPII) transcription and gene regulation. We built extremely randomized trees (ETs) models to predict the genome-wide R-loops using RNAPII and multiple histone modifications chromatin immunoprecipitation (ChIP)-seq, DNase-seq, Global Run-On sequencing (GRO-seq) and R-loop profiling data. We compared the performance of ET models to multiple machine learning approaches, and the proposed ET models achieved the best and extremely robust performances. Epigenetic profiles are highly predictive of R-loops genome-widely and they are strongly associated with R-loop formation. In addition, the presence of R-loops is significantly correlated with RNAPII transcription activity, H3K4me3 and open chromatin around the transcription start site, and H3K9me1 and H3K9me3 around the transcription termination site. RNAPII pausing defects were correlated with 5′R-loops accumulation, and transcriptional termination defects and read-throughs were correlated with 3′R-loops accumulation. Furthermore, we found driver genes with 5′R-loops and RNAPII pausing defects express significantly higher and genes with 3′R-loops and read-through transcription express significantly lower than genes without R-loops. These driver genes are enriched with chromosomal instability, Hippo–Merlin signaling Dysregulation, DNA damage response and TGF-β pathways, indicating R-loops accumulating at the 5′ end of genes play oncogenic roles, whereas at the 3′ end of genes play tumor-suppressive roles in tumorigenesis.

Funder

Research Innovation and Pilot Funding from Cincinnati Children’s Hospital Medical Center

CancerFree KIDS Foundation

Department of Defense

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3