Anc2vec: embedding gene ontology terms by preserving ancestors relationships

Author:

Edera Alejandro A1,Milone Diego H1,Stegmayer Georgina1

Affiliation:

1. Research Institute for Signals, Systems and Computational Intelligence, sinc(i), FICH-UNL, CONICET, Ciudad Universitaria UNL, 3000, Santa Fe, Argentina

Abstract

Abstract The gene ontology (GO) provides a hierarchical structure with a controlled vocabulary composed of terms describing functions and localization of gene products. Recent works propose vector representations, also known as embeddings, of GO terms that capture meaningful information about them. Significant performance improvements have been observed when these representations are used on diverse downstream tasks, such as the measurement of semantic similarity between GO terms and functional similarity between proteins. Despite the success shown by these approaches, existing embeddings of GO terms still fail to capture crucial structural features of the GO. Here, we present anc2vec, a novel protocol based on neural networks for constructing vector representations of GO terms by preserving three important ontological features: its ontological uniqueness, ancestors hierarchy and sub-ontology membership. The advantages of using anc2vec are demonstrated by systematic experiments on diverse tasks: visualization, sub-ontology prediction, inference of structurally related terms, retrieval of terms from aggregated embeddings, and prediction of protein–protein interactions. In these tasks, experimental results show that the performance of anc2vec representations is better than those of recent approaches. This demonstrates that higher performances on diverse tasks can be achieved by embeddings when the structure of the GO is better represented. Full source code and data are available at https://github.com/sinc-lab/anc2vec.

Funder

Agencia Nacional de Promoción Científica y Tecnológica

Universidad Nacional del Litoral

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3