Partial order relation–based gene ontology embedding improves protein function prediction

Author:

Li Wenjing1,Wang Bin2,Dai Jin3,Kou Yan4,Chen Xiaojun1,Pan Yi56ORCID,Hu Shuangwei4,Xu Zhenjiang Zech27ORCID

Affiliation:

1. College of Computer Science and Software, Shenzhen University , Shenzhen , China

2. School of Mathematics and Computer Sciences, Nanchang University , Nanchang , China

3. Center for Quantum Technology Research and School of Physics, Beijing Institute of Technology , Beijing , China

4. Xbiome, Scientific Research Building, Tsinghua High-Tech Park , Shenzhen , China

5. Faculty of Computer Science and Control Engineering Shenzhen Institute of Advanced Technology , Chinese Academy of Sciences 1068 Xueyuan Avenue, , Shenzhen , China

6. Shenzhen University Town , Chinese Academy of Sciences 1068 Xueyuan Avenue, , Shenzhen , China

7. State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang , China

Abstract

Abstract Protein annotation has long been a challenging task in computational biology. Gene Ontology (GO) has become one of the most popular frameworks to describe protein functions and their relationships. Prediction of a protein annotation with proper GO terms demands high-quality GO term representation learning, which aims to learn a low-dimensional dense vector representation with accompanying semantic meaning for each functional label, also known as embedding. However, existing GO term embedding methods, which mainly take into account ancestral co-occurrence information, have yet to capture the full topological information in the GO-directed acyclic graph (DAG). In this study, we propose a novel GO term representation learning method, PO2Vec, to utilize the partial order relationships to improve the GO term representations. Extensive evaluations show that PO2Vec achieves better outcomes than existing embedding methods in a variety of downstream biological tasks. Based on PO2Vec, we further developed a new protein function prediction method PO2GO, which demonstrates superior performance measured in multiple metrics and annotation specificity as well as few-shot prediction capability in the benchmarks. These results suggest that the high-quality representation of GO structure is critical for diverse biological tasks including computational protein annotation.

Funder

National Key RD Program of China

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3