Benchmarking differential expression, imputation and quantification methods for proteomics data

Author:

Lin Miao-Hsia1,Wu Pei-Shan2,Wong Tzu-Hsuan1,Lin I-Ying1,Lin Johnathan3ORCID,Cox Jürgen4,Yu Sung-Huan3ORCID

Affiliation:

1. Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, No.1 Jen Ai road section 1 Taipei 100 Taiwan

2. Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan

3. Institute of Precision Medicine, National Sun Yat-set University, No.70 Lien-hai Rd., Kaohsiung 80424, Taiwan

4. Computational Systems Biochemistry Research Group, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany

Abstract

Abstract Data analysis is a critical part of quantitative proteomics studies in interpreting biological questions. Numerous computational tools for protein quantification, imputation and differential expression (DE) analysis were generated in the past decade and the search for optimal tools is still going on. Moreover, due to the rapid development of RNA sequencing (RNA-seq) technology, a vast number of DE analysis methods were created for that purpose. The applicability of these newly developed RNA-seq-oriented tools to proteomics data remains in doubt. In order to benchmark these analysis methods, a proteomics dataset consisting of proteins derived from humans, yeast and drosophila, in defined ratios, was generated in this study. Based on this dataset, DE analysis tools, including microarray- and RNA-seq-based ones, imputation algorithms and protein quantification methods were compared and benchmarked. Furthermore, applying these approaches to two public datasets showed that RNA-seq-based DE tools achieved higher accuracy (ACC) in identifying DEPs. This study provides useful guidelines for analyzing quantitative proteomics datasets. All the methods used in this study were integrated into the Perseus software, version 2.0.3.0, which is available at https://www.maxquant.org/perseus.

Funder

Ministry of Science and Technology

Academia Sinica Core Facility and Innovative Instrument

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3