Affiliation:
1. Department of Biostatistics at Xuzhou Medical University, China
2. Department of Biostatistics at Nanjing Medical University, China
3. Department of Biostatistics, Center for Medical Statistics and Data Analysis and Key Laboratory of Human Genetics and Environmental Medicine at Xuzhou Medical University, China
Abstract
Abstract
Integration of expression quantitative trait loci (eQTL) into genome-wide association studies (GWASs) is a promising manner to reveal functional roles of associated single-nucleotide polymorphisms (SNPs) in complex phenotypes and has become an active research field in post-GWAS era. However, how to efficiently incorporate eQTL mapping study into GWAS for prioritization of causal genes remains elusive. We herein proposed a novel method termed as Mixed transcriptome-wide association studies (TWAS) and mediated Variance estimation (MTV) by modeling the effects of cis-SNPs of a gene as a function of eQTL. MTV formulates the integrative method and TWAS within a unified framework via mixed models and therefore includes many prior methods/tests as special cases. We further justified MTV from another two statistical perspectives of mediation analysis and two-stage Mendelian randomization. Relative to existing methods, MTV is superior for pronounced features including the processing of direct effects of cis-SNPs on phenotypes, the powerful likelihood ratio test for assessment of joint effects of cis-SNPs and genetically regulated gene expression (GReX), two useful quantities to measure relative genetic contributions of GReX and cis-SNPs to phenotypic variance, and the computationally efferent parameter expansion expectation maximum algorithm. With extensive simulations, we identified that MTV correctly controlled the type I error in joint evaluation of the total genetic effect and proved more powerful to discover true association signals across various scenarios compared to existing methods. We finally applied MTV to 41 complex traits/diseases available from three GWASs and discovered many new associated genes that had otherwise been missed by existing methods. We also revealed that a small but substantial fraction of phenotypic variation was mediated by GReX. Overall, MTV constructs a robust and realistic modeling foundation for integrative omics analysis and has the advantage of offering more attractive biological interpretations of GWAS results.
Funder
Social Development Project of Xuzhou Municipality
Statistical Science Research Project from National Bureau of Statistics of China
Postdoctoral Science Foundation of Xuzhou Medical University
Training Project for Youth Teams of Science and Technology Innovation at Xuzhou Medical University
Six-Talent Peaks Project in Jiangsu Province of China
QingLan Research Project of Jiangsu Province for Outstanding Young Teachers
China Postdoctoral Science Foundation
Natural Science Foundation of Jiangsu Province of China
Youth Foundation of Humanity and Social Science funded by Ministry of Education of China
National Natural Science Foundation of China
Publisher
Oxford University Press (OUP)
Subject
Molecular Biology,Information Systems
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献