Incorporating genetic similarity of auxiliary samples into eGene identification under the transfer learning framework

Author:

Zhang Shuo,Jiang Zhou,Zeng PingORCID

Abstract

Abstract Background The term eGene has been applied to define a gene whose expression level is affected by at least one independent expression quantitative trait locus (eQTL). It is both theoretically and empirically important to identify eQTLs and eGenes in genomic studies. However, standard eGene detection methods generally focus on individual cis-variants and cannot efficiently leverage useful knowledge acquired from auxiliary samples into target studies. Methods We propose a multilocus-based eGene identification method called TLegene by integrating shared genetic similarity information available from auxiliary studies under the statistical framework of transfer learning. We apply TLegene to eGene identification in ten TCGA cancers which have an explicit relevant tissue in the GTEx project, and learn genetic effect of variant in TCGA from GTEx. We also adopt TLegene to the Geuvadis project to evaluate its usefulness in non-cancer studies. Results We observed substantial genetic effect correlation of cis-variants between TCGA and GTEx for a larger number of genes. Furthermore, consistent with the results of our simulations, we found that TLegene was more powerful than existing methods and thus identified 169 distinct candidate eGenes, which was much larger than the approach that did not consider knowledge transfer across target and auxiliary studies. Previous studies and functional enrichment analyses provided empirical evidence supporting the associations of discovered eGenes, and it also showed evidence of allelic heterogeneity of gene expression. Furthermore, TLegene identified more eGenes in Geuvadis and revealed that these eGenes were mainly enriched in cells EBV transformed lymphocytes tissue. Conclusion Overall, TLegene represents a flexible and powerful statistical method for eGene identification through transfer learning of genetic similarity shared across auxiliary and target studies.

Funder

the National Natural Science Foundation of China

the Youth Foundation of Humanity and Social Science funded by Ministry of Education of China

the Natural Science Foundation of Jiangsu Province of China

the China Postdoctoral Science Foundation

the QingLan Research Project of Jiangsu Province for Young and Middle-aged Academic Leaders

Six Talent Peaks Project in Jiangsu Province

the Training Project for Youth Teams of Science and Technology Innovation at Xuzhou Medical University

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3