Affiliation:
1. School of Computer Science and Engineering, Central South University , 410075, Changsha , China
Abstract
Abstract
Motivation: The interplay between protein and nucleic acid participates in diverse biological activities. Accurately identifying the interaction between protein and nucleic acid can strengthen the understanding of protein function. However, conventional methods are too time-consuming, and computational methods are type-agnostic predictions. We proposed an ensemble predictor termed TSNAPred and first used it to identify residues that bind to A-DNA, B-DNA, ssDNA, mRNA, tRNA and rRNA. TSNAPred combines LightGBM and capsule network, both learned on the feature derived from protein sequence. TSNAPred utilizes the sliding window technique to extract long-distance dependencies between residues and a weighted ensemble strategy to enhance the prediction performance. The results show that TSNAPred can effectively identify type-specific nucleic acid binding residues in our test set. What is more, it also can discriminate DNA-binding and RNA-binding residues, which has improved 5% to 10% on the AUC value compared with other state-of-the-art methods. The dataset and code of TSNAPred are available at: https://github.com/niewenjuan-csu/TSNAPred.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities of Central South University
Publisher
Oxford University Press (OUP)
Subject
Molecular Biology,Information Systems
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献