Reliability of palaeomagnetic poles from sedimentary rocks

Author:

Vaes Bram1ORCID,Li Shihu23,Langereis Cor G1,van Hinsbergen Douwe J J1

Affiliation:

1. Department of Earth Sciences, Utrecht University, Utrecht, 3584CS, The Netherlands

2. Lancaster Environment Centre, Lancaster University, LA1 4YQ, Lancaster, UK

3. State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

Abstract

SUMMARY Palaeomagnetic poles form the building blocks of apparent polar wander paths and are used as primary input for quantitative palaeogeographic reconstructions. The calculation of such poles requires that the short-term, palaeosecular variation (PSV) of the geomagnetic field is adequately sampled and averaged by a palaeomagnetic data set. Assessing to what extent PSV is recorded is relatively straightforward for rocks that are known to provide spot readings of the geomagnetic field, such as lavas. But it is unknown whether and when palaeomagnetic directions derived from sedimentary rocks represent spot readings of the geomagnetic field and sediments are moreover suffering from inclination shallowing, making it challenging to assess the reliability of poles derived from these rocks. Here, we explore whether a widely used technique to correct for inclination shallowing, known as the elongation–inclination (E/I) method, allows us to formulate a set of quality criteria for (inclination shallowing-corrected) palaeomagnetic poles from sedimentary rocks. The E/I method explicitly assumes that a sediment-derived data set provides, besides flattening, an accurate representation of PSV. We evaluate the effect of perceived pitfalls for this assumption using a recently published data set of 1275 individual palaeomagnetic directions of a >3-km-thick succession of ∼69–41.5 Ma red beds from the Gonjo Basin (eastern Tibet), as well as synthetic data generated with the TK03.GAD field model. The inclinations derived from the uncorrected data set are significantly lower than previous estimates for the basin, obtained using coeval lavas, by correcting inclination shallowing using anisotropy-based techniques, and by predictions from tectonic reconstructions. We find that the E/I correction successfully restores the inclination to values predicted by these independent data sets if the following conditions are met: the number of directions N is at least 100, the A95 cone of confidence falls within a previously defined A95min-max reliability envelope, no negative reversal test is obtained and vertical-axis rotation differences within the data set do not exceed 15°. We propose a classification of three levels (A, B and C) that should be applied after commonly applied quality criteria for palaeomagnetic poles are met. For poles with classification ‘A’, we find no reasons to assume insufficient quality for tectonic interpretation. Poles with classification ‘B’ could be useful, but have to be carefully assessed, and poles with classification ‘C’ provide unreliable palaeolatitudes. We show that application of these criteria for data sets of other sedimentary rock types classifies data sets whose reliability is independently confirmed as ‘A’ or ‘B’, and that demonstrably unreliable data sets are classified as ‘C’, confirming that our criteria are useful, and conservative. The implication of our analysis is that sediment-based data sets of quality ‘A’ may be considered statistically equivalent to data sets of site-mean directions from rapidly cooled igneous rocks like lavas and provide high-quality palaeomagnetic poles.

Funder

Netherlands Organisation for Scientific Research

Royal Society

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3