Longevity of small-scale (‘baby’) plumes and their role in lithospheric break-up

Author:

Koptev Alexander1ORCID,Cloetingh Sierd2ORCID,Ehlers Todd A1ORCID

Affiliation:

1. Department of Geosciences, University of Tübingen, Tübingen 72074, Germany

2. Tectonics Research Group, Utrecht University, Utrecht 3584 CS, Netherlands

Abstract

SUMMARY Controversy between advocates of ‘active’ (plume-activated) versus ‘passive’ (driven by external tectonic stresses) modes of continental rifting and break-up has persisted for decades. To a large extent, inconsistencies between observations and models are rooted in the conceptual model of plumes as voluminous upwellings of hot material sourced from the deep mantle. Such large-scale plumes are expected to induce intensive magmatism and topographic uplift, thereby triggering rifting. In this case of an ‘active’ rifting-to-break-up system, emplacement of plume-related magmatism should precede the onset of rifting that is not observed in many rifted continental margins, thus providing a primary argument in favour of an antiplume origin for continental break-up and supercontinent fragmentation. However, mantle plumes are not restricted to whole-mantle (‘primary’) plumes emanating from the mantle-core boundary but also include ‘secondary’ plumes originating from the upper mantle transition zone or shallower. Over the last decades a number of such ‘secondary’ plumes with horizontal diameters of only ∼100–200 km (therefore, sometimes also called ‘baby’ plumes) have been imaged in the upper mantle below Europe and China. The longevity of such small-scale plumes and their impact on geodynamics of continental break-up have so far not been explored. We present results of a systematic parametrical analysis of relatively small thermal anomalies seeded at the base of the lithosphere. In particular, we explore the effects of variations in initial plume temperature (T = 1500–1700 °C) and size (diameter of 80–116 km), characteristics of the overlying lithosphere (e.g. ‘Cratonic’, ‘Variscan’, ‘Mesozoic’ and oceanic) and intraplate tectonic regimes (neutral or far-field extension of 2–10 mm yr–1). In tectonically neutral regimes, the expected decay time of a seismically detectable ‘baby’-plume varies from ∼20 to >200 Myr and is mainly controlled by its initial size and temperature, whereas the effect of variations in the thermotectonic age of the overlying lithosphere is modest. These small but enduring plumes are able to trigger localized rifting and subsequent continental break-up occurring from ∼10 to >300 Myr after the onset of far-field extension. Regardless of the thermomechanical structure of the lithosphere, relatively rapid (tens of Myr) break-up (observed in models with a hot plume and fast extension) favours partial melting of plume material. In contrast, in the case of a long-lasting (a few hundreds of Myr) pre-break-up phase (relatively cold plume, low extension rate), rifting is accompanied by modest decompressional melting of only ‘normal’ sublithospheric mantle. On the basis of the models presented, we distinguish two additional modes of continental rifting and break-up: (1) ‘semi-active’ when syn-break-up magmatism is carrying geochemical signatures of the deep mantle with deformation localized above the plume head not anymore connected by its tail to the original source of hot material and (2) ‘semi-passive’ when the site of final lithospheric rupture is controlled by a thermal anomaly of plume origin but without invoking its syn-break-up melting. These intermediate mechanisms are applicable to several segments of the passive continental margins formed during Pangea fragmentation.

Funder

Alexander von Humboldt Foundation

ERC

Hungarian Academy of Sciences

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference301 articles.

1. Global travel time tomography with 3-D reference models;Amaru,2007

2. The thermal state of the upper mantle; no role for mantle plumes;Anderson;Geophys. Res. Lett.,2000

3. Global 1×1 thermal model TC1 for the continental lithosphere: implications for lithosphere secular evolution;Artemieva;Tectonophysics,2006

4. Thermal thickness and evolution of Precambrian lithosphere: a global study;Artemieva;J. geophys. Res.,2001

5. Tectonic evolution of Brazilian equatorial continental margin basins;Azevedo,1991

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3