Mesozoic rifting in SW Gondwana and break-up of the Southern South Atlantic Ocean

Author:

Lovecchio Juan Pablo1ORCID,Abdelmalak Mansour M.2,Planke Sverre23,Silio Ofelia12,Rohais Sébastien4,Arismendi Sebastián1,Vera Emilio Rojas1,Kulhanek Denise K.5,Bolatti Néstor1,Ramos Victor A.6

Affiliation:

1. YPF S.A. Exploration, Buenos Aires, Argentina

2. Department of Geosciences, University of Oslo, Oslo, Norway

3. Volcanic Basin Energy Research (VBER), Oslo, Norway

4. IFP Energies Nouvelles, Rueil-Malmaison, France

5. Kiel University, Kiel, Germany

6. Instituto de Estudios Andinos Don Pablo Groeber, UBA-CONICET, Buenos Aires, Argentina

Abstract

Abstract The opening of the South Atlantic Ocean in the Early Cretaceous was only the final stage of the complex rifting process of SW Gondwana. In this contribution, we reassess the chronology of Mesozoic basin formation in southern South America and Africa and integrate it in the long-term rifting and break-up history of SW Gondwana. During the Triassic, after the Gondwanides orogeny, plate-scale instabilities produced intracontinental rifting in Africa, and retro-arc extension on the SW-margin of Gondwana. This process was followed and accentuated by the impingement of the Karoo plume in the Early Jurassic, which triggered rifting in East Africa and ultimately produced the break-up of Eastern from Western Gondwana in the Middle Jurassic. Retro-arc extension continued to affect the palaeo-Pacific margin, with emplacement of the Chon Aike magmatic province in the Patagonian retro-arc during the Early–Middle Jurassic. By the Late Jurassic, retro-arc rifting reached a point of oceanic crust accretion, with the establishment of the Rocas Verdes back-arc basin in southern Patagonia, together with the formation of the Weddell Sea further south, between the South American plate and Antarctica. The core of the Late Paleozoic Gondwanides orogen, between southern South America and Africa, was subjected to oblique rifting at this time and produced the Outeniqua and Rawson/Valdés basins. This area was the locus of extension and oceanization in the Early Cretaceous associated with a rotation of the stress field from NE–SW to east–west extension. The formation of the South Atlantic Ocean resulted from lithospheric extension and was accompanied by extensive intrusive magmatism and extrusive flood basalts identified as seaward dipping reflectors, which were emplaced diachronically from south to north, along different segments along both conjugate margins. These volcanic rocks form the South Atlantic Large Igneous Province. The chronology of the South Atlantic opening and the magmatic sources and processes associated with the formation of seaward dipping reflectors remain interpretative as they have only been studied on seismic data but are still undrilled; hence, scientific drilling will be key to unravel many of these unknowns.

Funder

YPF

Publisher

Geological Society of London

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3