Adaptive sequential Monte Carlo for posterior inference and model selection among complex geological priors

Author:

Amaya M1ORCID,Linde N1,Laloy E2

Affiliation:

1. Institute of Earth Sciences, University of Lausanne, Lausanne 1015, Switzerland

2. Engineered and Geosystems Analysis, Institute for Environment, Mol 2400 Health and Safety, Belgian Nuclear Research Centre, Belgium

Abstract

SUMMARY Bayesian model selection enables comparison and ranking of conceptual subsurface models described by spatial prior models, according to the support provided by available geophysical data. Deep generative neural networks can efficiently encode such complex spatial priors, thereby, allowing for a strong model dimensionality reduction that comes at the price of enhanced non-linearity. In this setting, we explore a recent adaptive sequential Monte Carlo (ASMC) approach that builds on annealed importance sampling (AIS); a method that provides both the posterior probability density function (PDF) and the evidence (a central quantity for Bayesian model selection) through a particle approximation. Both techniques are well suited to parallel computation and rely on importance sampling over a sequence of intermediate distributions, linking the prior and the posterior PDF. Each subsequent distribution is approximated by updating the particle weights and states, compared with the previous approximation, using a small pre-defined number of Markov chain Monte Carlo (MCMC) proposal steps. Compared with AIS, the ASMC method adaptively tunes the tempering between neighboring distributions and performs resampling of particles when the variance of the particle weights becomes too large. We evaluate ASMC using two different conceptual models and associated synthetic cross-hole ground penetrating radar tomography data. For the most challenging test case, we find that the ASMC method is faster and more reliable in locating the posterior PDF than state-of-the-art adaptive MCMC. The evidence estimates are found to be robust with respect to the choice of ASMC algorithmic variables and much less sensitive to the model proposal type than MCMC. The variance of the evidence estimates are best estimated by replication of ASMC runs, while approximations based on single runs provide comparable estimates when using a sufficient number of proposal steps in approximating each intermediate distribution.

Funder

Swiss National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bayesian detectability of induced polarization in airborne electromagnetic data;Geophysical Journal International;2023-02-28

2. Visual Object Tracking Using Machine Learning;Science, Engineering Management and Information Technology;2023

3. Hydrogeological multiple-point statistics inversion by adaptive sequential Monte Carlo;Advances in Water Resources;2022-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3