Opportunistic magnetotelluric transects from CSEM surveys in the Barents Sea

Author:

Corseri R12ORCID,Planke S134,Faleide J I234,Senger K54,Gelius L J24,Johansen S E6

Affiliation:

1. Volcanic Basin Petroleum Research AS, Oslo, Norway

2. Department of Geosciences, University of Oslo, Oslo, Norway

3. Centre for Earth Evolution and Dynamics (CEED), University of Oslo, Oslo, Norway

4. Research Centre for Arctic Petroleum Exploration (ARCEx), University of Tromsø, Tromsø, Norway

5. Department of Arctic Geology, The University Centre in Svalbard (UNIS), Longyearbyen, Norway

6. The Centre for Geophysical Forecasting (CGF), Norwegian University of Science and Technology (NTNU), Trondheim, Norway

Abstract

Summary Magnetotelluric (MT) data allow for electrical resistivity probing of the Earth's subsurface. Integration of resistivity models in passive margin studies could help disambiguate non-unique interpretations of crustal composition derived from seismic and potential field data, a recurrent issue in the distal domain. In this contribution, we present the first marine MT data in the Barents Sea, derived from industrial controlled-source electromagnetic (CSEM) surveys. We characterize data quality, dimensionality, depth penetration and elaborate an analysis strategy. The extensive MT database consists of 337 receivers located along 7 regional transects, emanating from ∼70,000 km2 of 3D CSEM surveys acquired for hydrocarbon exploration from 2007 to 2019. High-quality MT data are extracted for periods ranging from 0.5 s to 5000 s. The data show no apparent contamination by the active source nor effects related to large time-gaps in data collection and variable solar activity. Along receiver profiles, abrupt lateral variations of apparent resistivity and phase trends coincide with major structural boundaries and underline the geological information contained in the data. Dimensionality analysis reveals a dichotomy between the western domain of the SW Barents Sea, dominated by a single N-S electromagnetic strike, and the eastern domain, with a two-fold, period-dependent strike. 35 receivers show 3D distortion caused by nearby bathymetric slopes, evidenced by elevated skew values. We delineate geographical areas where the 2D assumption is tenable and lay the foundation for future MT modelling strategies in the SW Barents Sea. We performed 2D MT inversion along one of the regional transects, a ∼220 km-long, E-W profile encompassing a major structural high and sedimentary basin approaching the continent-ocean transition. The resistivity model reveals low crustal resistivity values (1–10 Ω.m) beneath the deep sedimentary basins, in marked contrast with high resistivity values (1000–5000 Ω.m) of the thick crystalline crust on the structural high. We interpret this abrupt lateral resistivity variation as a rapid transition from a thick, dry continental crust to a hyperextended and hydrated crustal domain. Integration of resistivity with seismic velocity, density and magnetic susceptibility models may further refine these structural models and the underlying tectonic processes in the SW Barents Sea margin. Our methodology is applicable globally where 3D CSEM surveys are acquired and has a large potential for harvesting new knowledge on the electrical resistivity properties of the lithosphere.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3