Remagnetization of Jutal dykes in Gilgit area of the Kohistan Island Arc: Perspectives from the India–Asia collision

Author:

Jadoon Umar Farooq1,Huang Baochun1,Zhao Qian1ORCID,Shah Syed Anjum2,Rahim Yasin1

Affiliation:

1. Key Laboratory of Orogenic Belt and Crustal Evolution, Ministry of Education, School of Earth and Space Sciences, Peking University, Beijing 100871, China

2. Saif Energy limited, Islamabad 44000, Pakistan

Abstract

SUMMARY The Kohistan Island Arc (KIA) occupies the northwestern region of the Himalayan Mountains, sandwiched between Asia and India plates. Its formation, collision with plate boundaries, and evolution has been controversially discussed for a couple of decades. To better understand this, a palaeomagnetic study has been conducted on the Jutal dykes (ca. 75 Ma), intruded in the northeastern part of the KIA. Comprehensive rock magnetic investigations reveal that the magnetic carrier minerals are pyrrhotite and magnetite. An intermediate temperature component (ITC) predominates the natural remanent magnetization and shows good coincidence within-site; it is carried by pyrrhotite and is considered reliable, yielding a mean direction at Dg/Ig = 11.5°/39.9° (kg = 28.4, α95 = 3.5°) before and Ds/Is = 8.6°/12.1° (ks = 5.1, α95 = 9.1°) after tilt correction. A high-temperature component that is carried by magnetite exhibits random distribution within-site. The fold test for the ITC is negative, indicating a post-folding origin. Scanning electron microscopy combined with energy-dispersive X-ray spectroscopy indicates that the magnetic carrier minerals were influenced by metamorphism or thermochemical fluids. The comparison of mean palaeolatitude (22.6 ± 3.5°N) of the ITC with the collisional settings and thermal history of the study area implies that the remagnetization occurred at ∼50–35 Ma, consistent with the previous reported palaeomagnetic data of the KIA. We propose a tectonic model that shows the evolution of the Jutal dykes, supporting the concept that India collided with the KIA first, followed by a later collision with Asia.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3